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Abstract—We propose a new method of sensor planning for mobile robot localiza-
tion using Bayesian network inference. Since we can model causal relations between
situations of the robot’s behavior and sensing events as nodes of a Bayesian net-
work, we can use the inference of the network for dealing with uncertainty in sensor
planning and thus derive appropriate sensing actions.

In this system we employ a multi-layered-behavior architecture for navigation and
localization. This architecture effectively combines mapping of local sensor informa-
tion and the inference via a Bayesian network for sensor planning. The mobile robot
recognizes the local sensor patterns for localization and navigation using a learned
regression function. Since the environment may change during the navigation and
the sensor capability has limitations in the real world, the mobile robot actively
gathers sensor information to construct and reconstruct a Bayesian network, then
derives an appropriate sensing action which maximizes a utility function based on
inference of the reconstructed network. The utility function takes into account belief
of the localization and the sensing cost. We have conducted some simulation and
real robot experiments to validate the sensor planning system.

Key words: Sensor planning; mobile robot; localization; Bayesian network infer-
ence; uncertainty.

1 Introduction

In a complex environment, how to localize a mobile robot on its way and to navi-
gate autonomously towards a goal is a very fascinating problem to many researchers.
Until now, mobile robots have navigated mainly using a global map constructed
from sensor information. A mobile robot localizes itself based on matching local or
global sensor information to the map then decides its behavior subsequently based
on the matching results. However, in the real world, since many uncertainty fac-



tors adversely affect navigation of robots, 1t is difficult to use map-based methods.
Therefore, we need an approach to cope with such uncertainty factors. In this paper,
we take Bayesian network approach. The field of Bayesian networks and graphical
models has grown in recent years and much progress has been made in the theo-
retical analysis as well as its applications to real problems [1][2][3]. However, less
progress has been made in its application to sensor planning of robots. Bayesian
networks allow us to represent causal relations among situations of robot sensing and
the obtained data or evidences in a natural manner and to quantitatively analyze
beliefs about the situations. Consequently, the approach provides a sound basis for
dealing with uncertainty in sensor planning.

2 Previous Studies

Tani [4] developed a mobile robot system which focuses on local sensor information
and directly maps the information to motor command space. Although the method
allows the robot to navigate along a previously determined path, it has no skill for
recognizing and distinguishing two (or more) sets of patterns that hold the same
sensor information. Thrun [5] [11] proposed localization of a mobile robot using
Bayesian analysis of the probabilistic belief. The system models environment and
actions in Markov model following the time axis, the environment must be static
[11], moreover, the system depends on distance information from wheel encoder.
However, wheelless robots are very difficult to get accurate distance information us-
ing odometer, and we have to consider how to cope with a dynamic environment.
In this paper, we represent causal and contextual relation of the sensing results and
global localization in a Bayesian network, and propose a sensor planning approach
based on Bayesian network inference to solve the dynamic environment in which
we can not use accurate distance information. Asoh et al. [6] developed a mobile
robot system which navigates using a prior-designed Bayesian network. The system
reduces uncertainty in the localization by conversation with a human using a speech
recognition subsystem. Inamura et al. [7] acquired a mobile robot’s action based
on a prior-built Bayesian network, and decreased uncertainty by “human teaching”.
These methods cope with uncertainty of local sensor information and localize the
robots based on calculation of the posterior probability. However, these methods
have not implemented sensor planning mechanisms to efficiently gather information
of the environment. Moreover, since constructed Bayesian networks cannot be mod-
ified, the systems have to initially prepare a complete Bayesian network to have
prior knowledge. Singhal et al. [8] presented an approach for multimodal sensor
fusion using dynamic Bayesian networks and an occupancy grid. The robot updates
the occupancy grid representation via dynamic Bayesian networks. However this
method also has no sensor planning capability. As for sensor planning, Miura et al.
[9] proposed a method for vision-motion planning of a mobile robot under vision
uncertainty and limited computational resource though they did not use Bayesian
networks. Rimey et al. [10] used Bayesian networks to recognize table setting, and
plan the camera’s movement based on maximum expected utility decision rules.

In this paper we propose a sensor planning system which avoids error of global
measurement, maps limited sensor information to motor commands, and increases



the belief of localization based on Bayesian network inference. The robot actively
gathers the sensor information and maps that information into Bayesian networks.
To form an efficient sensing strategy, the system reconstructs the Bayesian network
based on a composite criterion between localization belief and the sensing cost. This
reconstructed Bayesian network is utilized to plan the sensing action and localization
of the mobile robot.

3 Task Setting

We would like to describe our main task setting of this paper. As shown in Fig 3,
a mobile robot learns the local sensor information (C, E, D or B), so that it may
navigate from a “start’ point to an intersection D and arrive at a goal E while door
(at an intersection B) is closed. However when door (at the intersection B) is open
incidentally, the local sensing information at B and D will be identical. Therefore
the mobile robot can not distinguish which intersection is correct to navigate itself to
the goal E only based on the previously learned model of the local sensing. That is, if
there are some intersections with the same local sensing information in a navigation
path, how to recognize which is “true D”, i.e., which intersection could guide the
robot to the goal E? To solve this problem, we developed a system to infer the belief
of the D.

In our system, the mobile robot can change the start point, and the localization
doesn’t depend on distance information obtained from wheel encoder. Moreover,
since the distance information have lots of uncertainty, for example, in Figure 9, if
we assume it is very near from B1 to B2, localization of B2 will be very difficult only
by measuring distance from start point to B1 or B2. To cope with the uncertainty
of measuring distance and dynamic environment, our system combine the low level
navigation and high level inference in Bayesian network. Of course, we can also
fixed the environment and combine the global position measuring or local distance
measuring (for example, the distance from Bl to B2) into a Bayesian network [6],
the localization will be trivial.

It is easy to measure the distance by a wheel encoder for instance, but if localization
is applied to a humanoid rather than a wheeled mobile robot, the combination of
pieces of low level navigation in Bayesian network is more available and general than
measuring distance.

4 Basic concept of the system

Bayesian networks are directed acyclic graphs (DAGs) that represent dependen-
cies between variables in a probabilistic models [1] [2] [3]. Tt is a graphical way to
represent a particular factorization of a joint distribution. Each variable is repre-
sented by a node in the network. A directed arc is drawn from node A to node B if
B is conditioned on A in the factorization of the joint distribution. For example, to
represent the factorization (1) we would draw an arc from W to Y but not from W



to Z. The Bayesian network representing the factorization (1) is shown in Figure 1.
PW,X)Y,Z)=P(W)P(X)P(Y|W)P(Z|X,Y) (1)

If we would compute the conditional probability P(Y|W, X, Z), firstly, we must
obtain conditional probability of every pair of variables that connected by directed
arc, and evidence of nodes will propagate the local conditional probability to the
node Y following the arc. Some Bayesian network applications are implemented suc-
cessfully in user modeling [12], mobile robot navigation ([6] [7]), and vision planning
[10] in resent decade.

In this paper, we represent causal and contextual relation of the sensing results and
global localization in a Bayesian network, but not in Bayesian rule, and fuse all of
conditional probabilities between sensing results and global localization to compute
the conditional probability (localization belief) P(D|f, s1, ..., $,) when some sensing
events are happened.

In this paper we propose a concept of Bayesian network reconstruction for sensor
planning. To summary, we use an extended wet grass example of Ref.[2] shown in
Figure 2(a). Mr. Holmes infers which is the cause of Holmes’s wet grass (node H),
i.e., rain (node R) or sprinkler (node S). If Holmes knows Watson’s grass is also wet,
then the belief of R will increase and the belief of S will decrease. This is an “ez-
plaining away”’ example (Fig.2(a)). Now we consider the case in (Fig.2(b)) in which
Holmes makes a choice in checking (or sensing) multiple evidences (Wq, Wa, W, ...)
which could increase belief of the node R. If the sensing condition such as belief of
the parent node, sensing cost, etc. varies depending on WW;, Holmes should consider
which W; is appropriate based on some criterion taking into account the condition.
This is basically a sensor planning problem. If we take the nodes R and S as beliefs
of a mobile robot localization and the nodes W, as the sensing actions, the sen-
sor planning problem can be transformed into construction and evaluation of such
Bayesian network.

For solving this problem, we propose a Bayesian network reconstruction based on
an integrated utility function (a ratio of belief and the sensing cost). The system
compares the integrated utility value of every node of ezplaining away step, then
reconstructs the last configuration of the Bayesian network (Fig.2(c)). The recon-
structed Bayesian network will help Holmes to determine the best sensing strategy,
i.e., the most effective way to search for evidences supporting the node R and in-
crease the belief. The reconstruction of the network serves to prune the useless
search tree for evidences.

Based on the above concept, we propose an architecture of multi-layered-behavior
to plan the sensor’s action to localize a mobile robot. This architecture involves low
level action control (LLAC) and high level inference (HLI) capabilities. Figure 4
shows the architecture of our system. The low level action control (LLA C) identifies
local sensor patterns of a limited sensor information space and directly maps these
patterns to the motor command space. However, since the sensor capability is
limited in the real-world and the patterns may change depending on the environment,
it is difficult to localize and navigate the robot correctly to the goal only by this
control level. Therefore, the system employs high level inference (HLI) to estimate
the robot’s position based on causal relations of local sensor information nodes.



Identified local sensor patterns are added into a group of sensing nodes, then the
system constructs/reconstructs these sensing nodes into a Bayesian network.
Our method has the following key features:

e Our localization method differs from traditional methods in that we not only
focus on local sensor information, but also perform sensor planning which takes
into account causal relations of the local sensor information for the localization.

e In order to decrease uncertainty in localization caused by faulty sensor infor-
mation, we attempt to actively gather information of the environment and
to map these information nodes into a Bayesian network, then use them for
probabilistic reasoning to correctly localize the robot.

e Our method actively performs sensor planning and reconstruct the network
structure taking into account both of sensing cost and localization belief, then
forms a plan for the sensing action to localize the robot.

e Initially the system does not have a complete prior-built Bayesian network. A
robot gathers sensor information, creates nodes, and obtains the prior prob-
abilities (conditional probabilities) automatically. Then the system compares
the integrated utility of every sensing node in the Bayesian network. Finally,
a configuration of the Bayesian network for efficient localization is obtained.

5 The Prototype System

We use a mobile robot (B14, Real World Interface) shown in Figure 5. The mobile
robot is equipped with a Pentium CPU, 16 sonar sensors, a color CCD camera, and
other sensors. A desktop PC running Linux is used for the server of the Bayesian
network inference (HLI), and it transfers the calculated belief to the robot via a
socket stream.

For the software in our prototype system, we implemented the Bayesian networks
in C++ using the source code of Ref.[13]. The system calls the B14’s software
library (Bee Soft) to drive the mobile robot. We implemented a three-layered Back
Propagation Neural Network (BPNN) to navigate the mobile robot by the low level
action control (LLAC).

6 Implementation of LLAC

The mobile robot is basically driven by a potential method. Figure 3 (left) shows
a trajectory of the robot in a workspace. Fig.3 (right) shows a time sequence of the
corresponding sonar sensor data as a gray level image. The vertical axis represents
the time and the eight pixel along the horizontal slice represent a set of sonar sensor
data in which a darker (brighter) intensity level corresponds to a larger (smaller)
sonar distance value, respectively. On a road with no intersections, a horizontal slice
of the image has only one darkest point, the system searches for the maximum value



in every glance of the sonar sensors, and tracks the angular direction of the largest
distance value.

When a mobile robot comes to an intersection, the horizontal slice of the image will
have two or more darkest points. We evaluate the distribution of every temporally
sliced data to search the intersection. The robot’s action is determined by low level
action control at the intersection. Let us assume local sensor data S are projected
to a smaller feature space F' |, and the robot is given a filter function =«

xS —F (2)

f=m(s) (3)
where feF ,s€ S

We employ a three-layered Back Propagation Neural Network (BPNN) to model
the filter function 7 and map the 8-direction sonar data of the front of the mobile
robot into sensor feature space or action commands (translation and rotation) space
at intersections (like L, 4+ ,T ) of the path.

7 Implementation of HLI

7.1 Active sensing for localization using Bayesian network infer-
ence

As shown in Fig. 6, the belief of position D at the intersections (B or D) can be
obtained as the following formalization.

Bel(D) = P (D |f) (4)

where Bel(D) — the belief of position D
at the intersections B or D
P (D |f) — the posterior probability
supported by sensor feature f only.

The trajectory indicated by the solid line in Figure 6 illustrates a result of this
algorithm. Filtering the local sensing pattern of position B and position D, based
on Eq.(3), we can acquire the Bel(D) of every intersection (B or D) using Eq.(4).
Fig.6(a) shows the belief of position D depends on the solid line trajectory. Since
the local sensor information of B is identical with that of D, the mobile robot can
not localize itself only by the local sensing pattern only by Eq.(4), while it runs from
the “Start” point to the intersection D directly.

To overcome the difficulty and search the “true D”, the mobile robot performs
active sensing as shown by the dotted line trajectory in Fig.6. This time we can
obtain the belief of D at the intersections (B or D) from the following function:

Bel(D) =P (D|f,s1,...,5n) (5)



Note that s, ...,s, are the sensing nodes generated by active sensing. These sensing
nodes are obtained from various sensors (for instance, range sensor, vision sensor,
acoustic sensor, etc.) and difference in the position of feature along the path. We
construct the Bayesian network as shown in Fig.7(b) to calculate the Bel(D) at
the intersections (B or D). Figure 6(b) shows the belief of the position D which
corresponds to the trajectory of a dotted line. Sensing nodes propagate the evidences
backward to the node D. Bel(D) of the intersection D is increased while Bel(D)
of the intersection B is decreased.

7.2 Reconstruction of the Bayesian network for sensor planning

We can obtain the Bel(D) from Eq. (5), however we must note that we have
not considered the sensing cost. By taking into account the balance between belief
and the sensing cost, we propose an integrated utility function and a reconstruction
algorithm of the Bayesian network for sensor planning.

7.2.1 Reconstruction Algorithm

We define an integrated utility (IU) function (Eq. 6) which we can adjust priority
of the two criteria (belief and sensing cost). Depending on the balance between
sensing cost and belief, we obtain different planning results of robot behavior for
localization.

Costi

TU: = ¢ x ABel; + (1 — ) x (1 — —— 1 __
1 X e1+( )X( Zicosti

) (6)
where
ABeli = |0.5 - Beli| (7)

TU; denotes the integrated utility (IU) value of sensing node i, Cost; denotes the
sensing cost of sensing node 7, Bel; denotes the Bayesian network’s belief while the
mobile robot just obtains the evidence of active sensing 7 only, and ABel; represents
certainty of the belief of sensing node ¢ which contributes to the Bayesian network.
The maximum value of ABel; is 0.5 when Bel; = 0 or 1 and the minimum is 0
when Bel; = 0.5. TU value will increase along with increasing belief and decrease
along with increasing sensing cost. We use a parameter ¢ (0 < ¢ < 1) to balance
sensing cost and belief.

Before presenting of our new reconstruction algorithm, we would like to describe
a concept of “local Bayestan network”. Since the mobile robot must infer which
intersection could guide itself to the goal based on the beliefs of sensing nodes (or
sensing node sets) of the intersection, we associate the sensing nodes of the corridor
of each intersection to a “local network”. If there is a sub-corridors in a certain
corridor, a hidden state node (H) will be defined in the “local network”, and sensing
information of the sub-corridor will be the children nodes of the hidden state node
(H) (see Fig. 12 and Fig. 13). So a hiearachial Bayesian network can be constructed.

We associate the sensing nodes of a corridor at each intersection to a “local net-
work”. If there are some sub-corridors in a certain corridor of each intersection,
some nodes named hidden state nodes (H) will be defined in the “local network”.



We associate a hidden state node with a sub-corridor. Sensing information of the
sub-corridor corresponds to children nodes of the hidden state nodes (H) (see Fig.
12 and Fig. 13). So a hierarchical Bayesian network can be constructed.

We assume the mobile robot can recognize a goal only by local sensing. When the
mobile robot detects an intersection (for example, By, By, D of Fig. 12) which it
could guide the mobile robot to a goal using local environment sensing information,
the mobile robot will begin to search the goal in its corridor. If there are some
sub-corridors (or subsub-corridors), the mobile robot enters into every sub-corridor
(or subsub-corridor) by following the wall to search the goal. The search action will
be finished when the mobile robot finds the goal (+) or local environment T (for
example, C1,Cy,C5,Cy of Fig. 12). The mobile robot stops search action, then
turns back to the previous path, and records the sensing information of the both
sides of the sub-corridor (or subsub-corridor) until it comes back to the entry of the
sub-corridor (or subsub-corridor), (for example, Fy, F3 of Fig. 12).

The mobile robot can remember its orientation, actions (for example, “turn back”
or “go forward”) and remember orders of sensing information in the sub-corridor
(or subsub-corridor). Using these information the mobile robot can distinguish the
sensing information (sensing nodes) in the same sub-corridor (or subsub-corridor).
In the same way, the mobile robot can distinguish and label the sub-corridor (or
subsub-corridor) of each corridor (for example, B to Cy, By to Cy, D to E of Fig.
12). The mobile robot represents the position relation between the corridors and
sub-corridors as a position relation tree, in which sub-corridors are children nodes of
its upper layer corridor”s (or sub-corridor) node.

The mobile robot can search and gather the sensing information in all of the
corridors, sub-corridors, subsub-corridors (or more deep sub-corridor) following the
wall, until it come back to the first intersection of corridor (for example, By, Ba, C'
of Fig. 12).

The mobile robot represents the sensing information (sensing node) as position p
and sensing feature fof the environment. We label the intersections as counting num-
ber in the search order search. We also label the sensing nodes in position relation
tree (Ref. Section 4). We represent the position in a vector (N,, Ny., Ny, ..., order).
N¢y Nsey Nise, ... denote the corridor labels, for example, in Fig. 12, we can represent
the sensing node Sy as vector (D, F3, order), the order corresponds to that of sensing
information, when the mobile robot turns back to gather them in each corridor (or
sub-corridor). We use the vectors and sensing feature (f) to categorize these sensing
nodes of local networks.

Reconstruction Algorithm:

1. Initialization of Bayesian network :
The mobile robot performs active sensing at every intersection, and constructs
an original Bayesian network as Figure 8 using all of these sensing nodes.

2. STEP (1): Refine the local network.
For example, the system refine the local network k (the sensing nodes of an
intersection k) of Fig.8 by the following algorithm:

e Check the ABel; of every terminal sensing node, remove the node which
satisfies ABel; < ©.



(0 (0 < © < 0.5) is a threshold of ABel; < ©. When ABel; < O, we

regard the sensing node has no capability to localize the mobile robot.)

e IF' the number of survived nodes (ABel; > 0) isn’t zero,
THEN sort the survived sensing nodes according to their IU values,
TUy; = mazq, {IU}, (4 denotes the sensing nodes group of intersection

Save this sensing node that has TU};, and remove the other nodes.

¢ ELSE execute “combining process” to combine the sensing nodes to
improve belief until the sensing node set has enough A Bel to distinguish
the other intersections.

3. STEP (2): Combine all of the local networks to construct the global
Bayesian network :

(a) Refine the every local network (every intersection) based on STEP (1)
algorithm.
(b) Combine the local networks to reconstruct a new global Bayesian network.

(c) Finally, compare the terminal nodes (or terminal sensing node sets com-
bined by “combining process”), if they have exclusive relation,' then
remove one side, and save the others.

4. Combining Process of local network :

(a) Generate all combinations of sensing nodes in a local network,

(b) Calculate the TU value of the combined sensing node sets which has
ABel(sery > O, then sort these node sets based on IU value.

(c¢) Leave the sensing node set j, which has TU ) = maz {IUs.+}, and

(set j
remove the other node sets.

8 Experiments

We conducted some simulation and real robot experiments to validate the effec-
tiveness of our system.

8.1 Assumptions of experiments

To simplify the calculation and construction of local network, our experiments have
the following assumptions:

1. The parents-children relations are determined beforehand. The intersection is
parents nodes, sensing nodes of its corridor (or sub-corridor) which starts from
the intersection are children nodes (or grandchildren nodes).

1We define the exclusive relation as S, = Sp. If robot obtained an evidence Sq, an evidence S
will be ignored. For example the relation of S; and Sg in Fig.3.



2. The mobile robot searches all corridors, sub-corridors (or subsub-corridors),
and gathers the sensing information in following the wall.

3. The goal have unique local environment in the workspace The mobile robot will
stop the search action in every corridor (or sub-corridor) when it recognizes
that a certain intersection is (is not) the goal only by local sensing, and turns
back to entry of this corridor (or sub-corridor, subsub-corridor), then gathers
sensing information.

4. We use a position relation tree and search order to label the intersections and
corridors (or sub-corridors).

5. The mobile robot can categorize sensing nodes using intersections and corridors
(or sub-corridors) labels and sensing feature.

6. Prior probabilistic distribution (conditional probability table) of sensing nodes
is acquired by measuring the frequencies of the events.

7. We have not used a global distance information (from start point to current
point) and local distance information (between the sensing nodes) for local-
ization. The system only records the number of sensing features in sensing
order in every corridor (or sub-corridor). (Of course, we also can measure the
accurate global distance using odometer, the localization will be trivial.)

8. Sensing cost is proportional to the number of sensing features.
8.2 Simulation experiment 1

Firstly, we made an office environment (Figure 9) that has three intersections to
validate our reconstruction algorithm. If the mobile robot has local sensing only, it
can not recognize D which guides the robot to the goal E. The mobile robot will
turn left at each intersection (B1, B2 or D) to attempt to search the goal E. The
search of each intersection will be finished while the mobile robot perceives the local
environments is Cq or Co (T). Then the mobile robot turns back to gather the
active sensing nodes by some tutorial commands given by human, and records all
of sensing nodes (we can obtain sonar distance information only). To distinguish
the D from B1 (and B2) and construct the conditional probability table (CPT) of
every sensing node, the mobile robot turns back at a goal E and records the sensing
nodes. The original Bayesian network is constructed as Figure 10(a).

Consequently, we will reconstruct the original Bayesian network using the recon-
struction algorithm. We can change the parameter ¢ of IU function (Eq.6), the
planned active sensing action will be different depending on the value of ¢. Figure
9 (up) shows the active sensing trajectory for localization of the mobile robot when
the parameter ¢ = 1. In this case, the mobile robot only focuses on the belief but
does not consider sensing cost. Reconstruction process and every sensing node’s IU
value and belief is illustrated at Figure 10 (b) and (c). When ¢ = 0.33, we obtain
the results of TU value of sensing nodes as Figure 11 (c). After the reconstruction
process based on the ITU value, we will acquire a new reconstructed Bayesian network



(Figure 11 (b)). In this case, sensing action of the mobile robot will be planned as
shown in Figure 9 (down).

As shown in the results, the proposed algorithm works successfully and the sensing
behavior for localization varies depending on the parameter {.

8.3 Simulation experiments 2

How should we construct and reconstruct a hierarchical Bayesian network which
has hidden sensing nodes, states and multiple sensor information? Here, we build
a more complex environment to describe the problem as shown in Figure 12. In
the same way as the previous experiments, the mobile robot initially navigates by
LLAC, and gathers information to make CPTs of the sensing nodes and an original
Bayesian network (Figure 13 (a))

In Fig. 12, there are two hidden intersections (Fo, Fg) after passing intersections
Bo and D, respectively. We assume some hidden states (Ho and Hg) exist in
the Bayesian network. Ho (or Hg) denotes the sensing node sets of the hidden
intersections Fo (or Fg), we represent the causal relation between sensing nodes
and hidden state as shown in Fig. 13 (a) ( C3 and S3’s parent is Ho; C4 and
S5’s parent is Hg). The sensed evidence will be propagated from terminal nodes to
hidden state node (Ho or Hg)), then D’s belief will be updated by propagation of
hidden node’s probability. When the ¢ value (Fig. 13 (c)) of TU function is 0.35,
the original Bayesian network (Fig. 13 (a)) is reconstructed as Fig. 13 (b). Fig. 12
(down) shows the planned path for localization of the mobile robot.

The results of the experiment show that our system effectively localize the mobile
robot and allows to navigate to the goal in the complex environments using the
hierarchical Bayesian network.

8.4 Real robot experiments

To validate our algorithm in a real environment, we built an experimental environ-
ment (Figure 14), and the mobile robot performed wall-following using sonar sensor
and local sensing using vision. A CCD camera is mounted on the robot to recognize
the local environment (color landmark). Initially, when the door(B) is closed, the
mobile robot recognizes the local sensor patterns for localization and navigation us-
ing low level sensor information processing(color landmark) (Fig.14(a)). While the
door(B) is open, in the same way as in the previous simulation experiments, since
the mobile cannot localize itself only by local sensing information, active sensing
is performed using the sonar sensor (looking for some hollows on the walls). The
mobile robot can observe the local sensor information (landmark) by vision to decide
whether the position is the goal. The mobile robot performs active sensing using
the sonar sensor while it senses the position C is not the goal (Fig.14(b)(left) and
(c)(left)), and constructs the CPTs of every sensing node. The original Bayesian
network is constructed following the robot’s movement (Figure 14(b)(right) and
Fig.14(c)(right)). Biased on our reconstruction algorithm, we can obtain a ¢ value
(t = to) to balance the localization belief and sensing cost (Fig. Fig.15(d)). Conse-
quently, the mobile robot plans its action to obtain the active sensing event(Fig.15(e)



and (f)) and infer the localization(Bel(D)) of itself using the reconstructed Bayesian
network(Fig.15(d)(right)).

9 Conclusions

We proposed a new method of sensor planning for mobile robot localization using
Bayesian network inference. We can model causal relations between situations of
a robot’s behavior and sensing events as nodes of a Bayesian network and use the
inference via the network for dealing with uncertainty in sensor planning. We em-
ployed a multi-layered-behavior architecture for navigation and localization. Since
the environment may change during the navigation and sensor capability has lim-
itations in the real world, the mobile robot actively gathers sensor information to
construct and reconstruct a Bayesian network, then derives an appropriate sensing
action which maximizes a utility function based on inference of the reconstructed
network. The utility function takes into account the balance between belief of the
localization and the sensing cost. The experimental results of the sensor planning
for a mobile robot demonstrate the usefulness of the proposed system.

Although we have developed the prototype system and verified our approach, the
current system has some limitations. For example, the parameter ¢ of utility func-
tion has to be selected by several experimental results. However, how to balance the
sensing cost and localization belief in a generally integrated method? We consider
this is a very difficult problem. Since the parameter ¢ decision very depends on sens-
ing cost definition, moreover, it is difficult to represent the sensing cost objectively.
Maybe a hieratical decision process is more general, in which the system calculates
localization belief initially, then compares sensing cost of those sensing actions if
they can give enough belief.

In this system, the searching goal and gathering sensing event actions are controlled
by some sensor mapping functions (Eq.2,3) or some explicit landmarks. However, in
some complex environments, we can not use this simple method to gather sensing
information for Bayesian network construction. Some traditional path planning
solutions (for example, Chinese postman problem) will help us to solve this problem.

Our future plan includes the following: (1) to construct a generally integrated
method to balance the sensing cost and localization belief, (2) to learn structure of
Bayesian network from probabilistic data of sensing information, (3) to validate our
concepts using other applications.
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Figure 1: A directed acyclic graph (DAG) consistent with the conditional indepen-
dence in P(W, XY, Z).
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Figure 2: Bayesian network models for wet grass example (a)[10] and extended
examples ((b),(c)). Rain (node R) and sprinkler (node S) are causes of Holmes’
(node H) grass being wet, and Waison’s grass (node W) supports belief of Rain.
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Figure 3: The trajectory and its associated sensor data flow of a mobile robot
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Figure 4: Multi-layered-behavior architecture for sensor planning



Figure 5: RWI B14 mobile robot of this paper
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Figure 6: Active sensing for localization using Bayesian network inference
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Figure 7: Construction and reconstruction of the Bayesian network for sensor plan-
ning
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Figure 8: Local network of Bayesian network. Every local network is constructed
by each intersection’s active sensing nodes. Evidence of these sensing nodes will
be propagated to root node, and using these posterior probability to decide if this
intersection can guide the mobile robot to the goal.
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Figure 9: The mobile robot navigated following the solid line trajectory using infer-
ence of reconstructed Bayesian network. (up) ¢ = 1; (down) ¢ = 0.33.
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Figure 10: Reconstruction of the Bayesian network in the experiment 1 while ¢t = 1.
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Figure 11: Reconstruction of the Bayesian network in the experiment 1 while

t=0.33.
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Figure 12: (up) The mobile robot navigates itself by LLAC and some tutorial
commands to search the goal (E) and gathers the sensor information actively, then
compares the difference of every intersection to construct the CPTs of every sens-
ing node and original Bayesian network. (down) The mobile robot is navigated
following the solid line trajectory using inference of reconstructed Bayesian network

(t=10.95).
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Figure 13: Reconstruction of the Bayesian network which has hidden states.
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Figure 14: Real robot experiments of localization (1)
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Figure 15: Real robot experiments of localization (2)



