Writing R Extensions

Version 3.1.1 (2014-07-10)

R Core Team

This manual is for R, version 3.1.1 (2014-07-10).
Copyright (© 1999-2013 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

Acknowledgements 1
1 Creating R packages................. i .. 2
1.1 Package structure e 3
1.1.1 The DESCRIPTION file. ...\ttt ettt 4
11,2 LACEDSING . o ettt e 7
1.1.3 Package Dependenciesoouuuiiiiii e 9
1.1.4 The INDEX file. ..ottt 11
1.1.5 Package subdirectories.t 11
1.1.6 Data in packages 14
1.1.7 Non-R scripts in packages 15
1.2 Configure and Cleanupiiii i 16
1.2.1 USING MaKEVATS .\ttt ettt ettt et et e e e e e 18
1.2.1.1 OpenMP Supporto e 21
1.2.1.2 Using pthreads . ..o e 22
1.2.1.3 Compiling in sub-directories o i 23

1.2.2 Configure example.t 24
1.2.3 Using FI95 code. ... 25
1.2.4 Using CH—411 Code . ..ot e e 26
1.3 Checking and building packageso 27
1.3.1 Checking packagesot e e 28
1.3.2 Building package tarballso i 31
1.3.3 Building binary packages ... 32
1.4 Writing package vignettes 33
1.4.1 Encodings and vignettes. ... e 35
1.4.2 Non-Sweave VIgNETteS.ttt e e e 35
1.5 Package Namespacesttt 36
1.5.1 Specifying imports and eXportsoouti i 36
1.5.2 Registering S3 methods. i 37
1.5.3 Load hooKS. 38
1.5.4 useDynLib ... 38
1.5.5 Al example . ..o 40
1.5.6 Namespaces with S4 classes and methods, 41
1.6 Writing portable packages 42
1.6.1 PDF Sz ..o 45
1.6.2 Check tIming . .. oottt e 45
1.6.3 Encoding iSSUESoiinntit it 46
1.6.4 Portable C and CH4 code.o 46
1.6.5 Binary distribution i 47
1.7 DiagnostiC MESSAZES . . .« vttt ittt e 48
1.8 Internationalization 49
1.8.1 Clevel THESSAZES .« .« v vte ettt ettt et e 49
1.8.2 R MeSSaZES . . v v vttt ettt ettt e 49
1.8.3 Preparing translations i 50
1.9 CITATION files . oot e e e 50
110 Package By Des . .ottt 51
1.10.1 Fromtend 51

L1 SOIVICES o vttt e et e e e 51

2 Writing R documentation files.............................. 53
2.1 Rd format. . ..o 53
2.1.1 Documenting functionso 54
2.1.2 Documenting data Setst e 58
2.1.3 Documenting S4 classes and methods i 59
2.1.4 Documenting packages. 59
2.2 SeCHIONING . . o ottt 60
2.3 Marking teXt . . oot e 60
2.4 Lists and tableso 62
2.5 CTOSS-TEIETEIICES . . o oottt ettt e e e e e e e e 63
2.6 Mathematics 63
D A S ¥ | = PP 64
2.8 IMSETtIONS .« .ottt ettt e 64
2.9 INAICES . .ottt 65
2.10 Platform-specific documentation............. ..ot 65
211 Conditional teXt.o e 66
2.12 DyNamiC PaZES .« « vttt ettt e 66
2.13 User-defined MAaCTOS ovint e e 67
2.14 ENCOAING . . 67
2.15 Processing documentation files 68
2.16 Editing Rd files 69
3 Tidying and profiling R code................................ 70
3.1 Tidying R code.o 70
3.2 Profiling R code for speedo 70
3.3 Profiling R code for memory Use....... ..o e 72
3.3.1 Memory statistics from Rprof 72
3.3.2 Tracking memory allocations. 73
3.3.3 Tracing copies of an object 73
3.4 Profiling compiled code. 73
B4l LIIUX ettt et e e e e 74
B4 Ll SPTOf o 74
3.4.1.2 oprofile and operf. 74

3.4.2 SOLATIS .« oot e 7
343 O Xt 7

4 Debugging 78
4.1 BrOWSIIE . . oottt e 78
4.2 Debugging R code. 79
4.3 Checking MemOTY ACCESS . .« vttt ettt ettt et e et 83
4.3.1 Using getortUTre. . ..o i vttt 83
4.3.2 Using valgrind o 83
4.3.3 Using the Address Sanitizer........... ..o, 85
4.3.4 Using the Undefined Behaviour Sanitizer................ ... i, 86
4.3.5 Other analyses with ‘clang’ i 87
4.3.6 Using ‘Dr. Memory’t e 87
4.3.7 Fortran array bounds checking.......... 87
4.4 Debugging compiled code. ... 88
4.4.1 Finding entry points in dynamically loaded code 89

4.4.2 Inspecting R objects when debugging o it 89

5 System and foreign language interfaces..................... 92
5.1 Operating SYStEIN ACCESSttt ettt e et ettt e e 92
5.2 Interface functions .C and .Fortran.............ouiiuiiiiiiitiniiieiiiieennn 92
5.3 dyn.load and dyn.unloadc.uuiiniiitt i e 94
5.4 Registering native ToUtines e 95

5.4.1 Speed considerations.ttt e 97
5.4.2 Linking to native routines in other packages.............. 98
5.5 Creating shared objects 99
5.6 Interfacing CH COdeot 100
5.7 Fortran I/O ... 101
5.8 Linking to other packages o i 102
5.8.1 Unix-aliKesottt e 102
5.8.2 WINAOWS . .\ e ettt 103
5.9 Handling R objects in C. ... 104
5.9.1 Handling the effects of garbage collection 105
5.9.2 Allocating SEOTAGE . .« o .\ttt et e e 106
5.9.3 Details of R typesooi 106
5.9.4 ABErIbUbeS . . o 107
D00 CLaS8ES - v e ettt 109
5.9.6 Handling Lists 109
5.9.7 Handling character data........... 110
5.9.8 Finding and setting variables i i 110
5.9.9 Some convenience functions.c..iiiiiii i 111
5.9.9.1 Semi-internal convenience functions............ i, 112
5.9.10 Named objects and COPYINGvvinnn it e 112
5.10 Interface functions .Call and .Externalcoiiiuiieiiiinaniinannn. 113
5.10.1 Calling .Callttt e e 113
5.10.2 Calling .EXternalouunuuttint ettt 113
5.10.3 Missing and special values.............o i 115
5.11 Evaluating R expressions from C....... i i 115
5.11.1 Zero-fndingo 117
5.11.2 Calculating numerical derivatives.......... ... i i 118
5.12 Parsing R code from C. e 121
5.12.1 Accessing source referencest 122
5.13 External pointers and weak references............ ... 123
B5.I3. 1 An example 124
5.14 Vector accessor functions.ot e 125
5.15 Character encoding iSSUESttt e 125

6 The R API: entry points for Ccode....................... 126

6.1 Memory allocation 126
6.1.1 Transient storage allocation........... ... i i 126
6.1.2 User-controlled Mmemoryo 127

6.2 Error handlingo 128
6.2.1 Error handling from FORTRAN e 128

6.3 Random number generationo i 128

6.4 Missing and IEEE special values 129

6.0 Printing.ooiiiiiiii i e e 129
6.5.1 Printing from FORTRAN e 129

6.6 Calling C from FORTRAN and vice Versaoiuuieeiiiieeninenennnnnn.. 130

6.7 Numerical analysis subroutines i i 130
6.7.1 Distribution functions 131

6.7.2 Mathematical functions.t 132

6.7.3 Numerical Utilities e 132

6.7.4 Mathematical constantso i e 134

6.8 Optimization 135
6.9 Integration e 136
6.10 Utility functions 136
6.11 Re-encodingcoouuiiii i e 138
6.12 Allowing Interruptsottt 139
6.13 Platform and version information......... 139
6.14 Inlining C functionso e e 139
6.15 Controlling visibilityo 140
6.16 Using these functions in your own C code.t 140
6.17 Organization of header files i 141

7 Generic functions and methods............................ 143
7.1 Adding New ZeneTiCSttt e e 144

8 Linking GUIs and other front-ends to R................... 145
8.1 Embedding R under Unix-alikeso i 145
8.1.1 Compiling against the R library i i, 147

8.1.2 Setting R callbacks..... ... 147

8.1.3 Registering symbols 150

8.1.4 Meshing event 100ps 151

8.1.5 Threading iSSUESt e 151

8.2 Embedding R under Windows 152
8.2.1 Using (D)COM 152

8.2.2 Calling R.dll directlyo 152

8.2.3 Finding RCHOME o 155
Function and variable index.................................... 157

Concept index................ . 158

Acknowledgements 1

Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy (who wrote the first draft
of a guide to using .Call and .External) and Adrian Trapletti (who provided information on
the C++ interface) are gratefully acknowledged.

Chapter 1: Creating R packages 2

1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its 1ib.loc
argument, and we also assume basic knowledge of the R CMD INSTALL utility. Otherwise, please
look at R’s help pages on

?library
?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment including a num-
ber of tools is assumed; the “R Installation and Administration” manual describes what is

needed for each OS.

Once a source package is created, it must be installed by the command R CMD INSTALL. See
Section “Add-on-packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.10 [Package types], page 51.

Some notes on terminology complete this introduction. These will help with the reading of
this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, a source package (the master files of a
package), or a tarball containing the files of a source package, or an installed package, the result
of running R CMD INSTALL on a source package. On some platforms (notably OS X and Windows)
there are also binary packages, a zip file or tarball containing the files of an installed package
which can be unpacked rather than installing from sources.

A package is not! a library. The latter is used in two senses in R documentation.

e A directory into which packages are installed, e.g. /usr/lib/R/library: in that sense it is
sometimes referred to as a library directory or library tree (since the library is a directory
which contains packages as directories, which themselves contain directories).

e That used by the operating system, as a shared, dynamic or static library or (especially on
Windows) a DLL, where the second L stands for ‘library’. Installed packages may contain
compiled code in what is known on Unix-alikes as a shared object and on Windows as a
DLL. The concept of a shared library (dynamic library on OS X) as a collection of compiled
code to which a package might link is also used, especially for R itself on some platforms.
On most platforms these concepts are interchangeable (shared objects and DLLs can both
be loaded into the R process and be linked against), but OS X distinguishes between shared
objects (extension .so) and dynamic libraries (extension .dylib).

There are a number of well-defined operations on source packages.

e The most common is installation which takes a source package and installs it in a library
using R CMD INSTALL or install.packages.

e Source packages can be budlt. This involves taking a source directory and creating a tarball
ready for distribution, including cleaning it up and creating PDF documentation from any
vignettes it may contain. Source packages (and most often tarballs) can be checked, when
a test installation is done and tested (including running its examples); also, the contents of
the package are tested in various ways for consistency and portability.

e Compilation is not a correct term for a package. Installing a source package which contains
C, C++ or Fortran code will involve compiling that code. There is also the possibility of
‘byte’ compiling the R code in a package (using the facilities of package compiler): already

1 although this is a persistent mis-usage. It seems to stem from S, whose analogues of R’s packages were officially
known as library sections and later as chapters, but almost always referred to as libraries.

Chapter 1: Creating R packages 3

base and recommended packages are normally byte-compiled and this can be specified for
other packages. So compiling a package may come to mean byte-compiling its R code.

e It used to be unambiguous to talk about loading an installed package using library(),
but since the advent of package namespaces this has been less clear: people now often talk
about loading the package’s namespace and then attaching the package so it becomes visible
on the search path. Function 1library performs both steps, but a package’s namespace can
be loaded without the package being attached (for example by calls like splines: :ns).

The concept of lazy loading of code or data is mentioned at several points. This is part of
the installation, always selected for R code but optional for data. When used the R objects of
the package are created at installation time and stored in a database in the R directory of the
installed package, being loaded into the session at first use. This makes the R session start up
faster and use less (virtual) memory. (For technical details, see Section “Lazy loading” in R
Internals.)

CRAN is a network of WWW sites holding the R distributions and contributed code, especially
R packages. Users of R are encouraged to join in the collaborative project and to submit their
own packages to CRAN: current instructions are linked from http://CRAN.R-project.org/
banner.shtml#submitting.

1.1 Package structure

The sources of an R package consists of a subdirectory containing a files DESCRIPTION and
NAMESPACE, and the subdirectories R, data, demo, exec, inst, man, po, src, tests, tools and
vignettes (some of which can be missing, but which should not be empty). The package
subdirectory may also contain files INDEX, configure, cleanup, LICENSE, LICENCE and NEWS.
Other files such as INSTALL (for non-standard installation instructions), README/README.md?, or
ChangeLog will be ignored by R, but may be useful to end users. The utility R CMD build may
add files in a build directory (but this should not be used for other purposes).

Except where specifically mentioned,® packages should not contain Unix-style ‘hidden’
files/directories (that is, those whose name starts with a dot).

The DESCRIPTION and INDEX files are described in the subsections below. The NAMESPACE
file is described in the section on Section 1.5 [Package namespaces|, page 36.

The optional files configure and cleanup are (Bourne shell) script files which are, re-
spectively, executed before and (provided that option --clean was given) after installation
on Unix-alikes, see Section 1.2 [Configure and cleanup], page 16. The analogues on Windows
are configure.win and cleanup.win.

For the conventions for files NEWS and ChangeLog in the GNU project see http://www.gnu.
org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because some file
systems (e.g., those on Windows and by default on OS X) are not case-sensitive, to maintain
portability it is strongly recommended that case distinctions not be used to distinguish different
packages. For example, if you have a package named foo, do not also create a package named
Foo.

To ensure that file names are valid across file systems and supported operating systems, the
ASCII control characters as well as the characters ‘"7, ¥’ ‘.7 ¢/’ <’ >’ 2’ “\’ and ‘|’ are not
allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’, ‘clock$’, ‘nul’, ‘coml’ to
‘com9’, and ‘1ptl’ to ‘1pt9’ after conversion to lower case and stripping possible “extensions”

2 This seems to be commonly used for a file in ‘markdown’ format. Be aware that most users of R will not
know that, nor know how to view such a file: platforms such as OS X and Windows do not have a default
viewer set in their file associations. The CRAN package web pages render such files in HTML.

3 currently, top-level files .Rbuildignore and .Rinstignore, and vignettes/.install_extras.

http://CRAN.R-project.org/banner.shtml#submitting
http://CRAN.R-project.org/banner.shtml#submitting
http://www.gnu.org/prep/standards/standards.html#Documentation
http://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 4

(e.g., ‘1pt5.foo.bar’), are disallowed. Also, file names in the same directory must not differ
only by case (see the previous paragraph). In addition, the basenames of ‘.Rd’ files may be used
in URLs and so must be ASCII and not contain %. For maximal portability filenames should only
contain only ASCII characters not excluded already (that is A-Za-z0-9._'#$%&+, ;=" O {}’ []
— we exclude space as many utilities do not accept spaces in file paths): non-English alphabetic
characters cannot be guaranteed to be supported in all locales. It would be good practice to
avoid the shell metacharacters (){}’ [1$~: ~ is also used as part of ‘8.3’ filenames on Windows.
In addition, packages are normally distributed as tarballs, and these have a limit on path lengths:
for maximal portability 100 bytes.

A source package if possible should not contain binary executable files: they are not portable,
and a security risk if they are of the appropriate architecture. R CMD check will warn about them?*
unless they are listed (one filepath per line) in a file BinaryFiles at the top level of the package.
Note that CRAN will not accept submissions containing binary files even if they are listed.

The R function package.skeleton can help to create the structure for a new package: see
its help page for details.

1.1.1 The DESCRIPTION file

The DESCRIPTION file contains basic information about the package in the following format:

()
Package: pkgname
Version: 0.5-1
Date: 2004-01-01
Title: My First Collection of Functions
Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),
email = "Joe.Developer@some.domain.net"),
person("Pat", "Developer", role = "aut"),
person("A.", "User", role = "ctb",
email = "A.User@whereever.net"))
Author: Joe Developer and Pat Developer, with contributions from A. User
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 1.8.0), nlme
Suggests: MASS
Description: A short (one paragraph) description of what
the package does and why it may be useful.
License: GPL (>= 2)
URL: http://www.r-project.org, http://www.another.url
BugReports: http://pkgname.bugtracker.url
-)

The format is that of a version of a ‘Debian Control File’ (see the help for ‘read.dcf’ and
http://wuw.debian.org/doc/debian-policy/ch-controlfields.html: R does not require
encoding in UTF-8 and does not support comments starting with ‘#’). Fields start with an
ASCII name immediately followed by a colon: the value starts after the colon and a space.
Continuation lines (for example, for descriptions longer than one line) start with a space or tab.
Field names are case-sensitive: all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written entirely in ASCIT — if this
is not possible it must contain an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and ‘Maintainer’
fields are mandatory, all other fields are optional. Fields ‘Author’ and ‘Maintainer’ can be
auto-generated from ‘Authors@R’, and may be omitted if the latter is provided: however if they
are not ASCII we recommend that they are provided.

4 false positives are possible, but only a handful have been seen so far.

http://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 5

The mandatory ‘Package’ field gives the name of the package. This should contain only
(ASCII) letters, numbers and dot, have at least two characters and start with a letter and not
end in a dot.

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘=’ characters. The
canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0" will be
handled as if it were ‘0.1-0". It is not a decimal number, so for example 0.9 < 0.75 since 9 <
75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph.

The mandatory ‘Title’ field should give a short description of the package. Some package
listings may truncate the title to 65 characters. It should be capitalized, not use any markup,
not have any continuation lines, and not end in a period.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field intended
for human readers, but not for automatic processing (such as extracting the email addresses of
all listed contributors: for that use ‘Authors@R’). Note that all significant contributors must be
included: if you wrote an R wrapper for the work of others included in the src directory, you
are not the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name followed a valid (RFC 2822)
email address in angle brackets. It should not end in a period or comma. This field is what is
reported by the maintainer function and used by bug.report. For a CRAN package it should
be a person, not a mailing list and not a corporate entity: do ensure that it is valid and will
remain valid for the lifetime of the package.

Note that the display name (the part before the address in angle brackets) should be enclosed
in double quotes if it contains non-alphanumeric characters such as comma or period. (The
current standard, RFC 5322, allows periods but RFC 2822 did not.)

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a suitable ‘Authors@R’ field is given.
This field can be used to provide a refined and machine-readable description of the package
“authors” (in particular specifying their precise roles), via suitable R code. The roles can include
‘"aut"’ (author) for full authors, ‘"cre"’ (creator) for the package maintainer, and ‘"ctb"’
(contributor) for other contributors, ‘"cph"’ (copyright holder), among others. See ?person for
more information. Note that no role is assumed by default. Auto-generated package citation
information takes advantage of this specification. The ‘Author’ and ‘Maintainer’ fields are
auto-generated from it if needed when building® or installing.

An optional ‘Copyright’ field can be used where the copyright holder(s) are not the authors.
If necessary, this can refer to an installed file: the convention is to use file inst/COPYRIGHTS.

The ‘Date’ field gives the release date of the current version of the package. It is strongly
recommended to use the yyyy-mm-dd format conforming to the ISO 8601 standard.

The ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’ and ‘LinkingTo’ fields are discussed in a
later subsection.

Dependencies external to the R system should be listed in the ‘SystemRequirements’ field,
possibly amplified in a separate README file.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example
the homepage of the author or a page where additional material describing the software can be
found. These URLs are converted to active hyperlinks in CRAN package listings.

5 at least if this is done in a locale which matches the package encoding.

Chapter 1: Creating R packages 6

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.reports instead of sending an email to the
maintainer.

Base and recommended packages (i.e., packages contained in the R source distribution or
available from CRAN and recommended to be included in every binary distribution of R) have
a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities must not
be used by other packages.

A ‘Collate’ field can be used for controlling the collation order for the R code files in a
package when these are processed for package installation. The default is to collate according to
the ‘C’ locale. If present, the collate specification must list all R code files in the package (tak-
ing possible OS-specific subdirectories into account, see Section 1.1.5 [Package subdirectories],
page 11) as a whitespace separated list of file paths relative to the R subdirectory. Paths con-
taining white space or quotes need to be quoted. An OS-specific collation field (‘Collate.unix’
or ‘Collate.windows’) will be used in preference to ‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A ‘LazyLoad’
field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep.source =
TRUE or FALSE: it might be needed exceptionally for a package designed to always be used with
keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package code is to be byte-compiled on in-
stallation: the default is currently not to, so this may be useful for a package known to benefit
particularly from byte-compilation (which can take quite a long time and increases the installed
size of the package). It is used for the recommended packages, as they are byte-compiled when R
is installed and for consistency should be byte-compiled when updated. This can be overridden
by installing with flag ——no-byte-compile.

The ‘ZipData’ logical field was used to control whether the automatic Windows build would
zip up the data directory or not prior to R 2.13.0: it is now ignored.

The ‘Biarch’ logical field is used on Windows to select the INSTALL option —-force-biarch
for this package. (Introduced in R 3.0.0.)

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to build the vignettes, as well as preventing® R CMD check from testing this. This
should only be used exceptionally, for example if the PDFs include large figures which are not
part of the package sources (and hence only in packages which do not have an Open Source
license).

The ‘VignetteBuilder’ field names (in a comma-separated list) packages that provide an
engine for building vignettes. These may include the current package, or ones listed in ‘Depends’,
‘Suggests’ or ‘Imports’. The utils package is always implicitly appended. See Section 1.4.2
[Non-Sweave vignettes|, page 35 for details.

If the DESCRIPTION file is not entirely in ASCII it should contain an ‘Encoding’ field specifying
an encoding. This is used as the encoding of the DESCRIPTION file itself and of the R and
NAMESPACE files, and as the default encoding of .Rd files. The examples are assumed to be in
this encoding when running R CMD check, and it is used for the encoding of the CITATION file.
Only encoding names latini, latin2 and UTF-8 are known to be portable. (Do not specify an
encoding unless one is actually needed: doing so makes the package less portable. If a package
has a specified encoding, you should run R CMD build etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the package contains code which to
be compiled, otherwise "no" (when the package could be installed from source on any platform
without additional tools). This is used by install.packages(type = "both") in R >= 2.15.2

6 But it is checked for Open Source packages by R CMD check --as-cran.

Chapter 1: Creating R packages 7

on platforms where binary packages are the norm: it is normally set by the repository assuming
compilation is required if and only if the package has a src directory.

The ‘0S_type’ field specifies the OS(es) for which the package is intended. If present, it
should be one of unix or windows, and indicates that the package can only be installed on a
platform with ‘.Platform$0S.type’ having that value.

The ‘Type’ field specifies the type of the package: see Section 1.10 [Package types|, page 51.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ (using the Computing Classification System of the Association
for Computing Machinery, http: //www . acm . org/class /), ‘Classification/JEL’ (the
Journal of Economic Literature Classification System, http://www .aeaweb.org/journal /
jel_class_system.html), or ‘Classification/MSC’ (the Mathematics Subject Classification
of the American Mathematical Society, http: / /www . ams . org /msc /). The subject
classifications should be comma-separated lists of the respective classification codes, e.g.,
‘Classification/ACM: G.4, H.2.8, I.5.1".

A ‘Language’ field can be used to indicate if the package documentation is not in English:
this should be a comma-separated list of standard (not private use or grandfathered) IETF
language tags as currently defined by RFC 5646 (http://tools.ietf.org/html/rfc5646, see
also http://en.wikipedia.org/wiki/IETF_language_tag), i.e., use language subtags which
in essence are 2-letter ISO 639-1 (http://en.wikipedia.org/wiki/IS0_639-1) or 3-letter ISO
639-3 (http://en.wikipedia.org/wiki/IS0_639-3) language codes.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by the
package management tools.

There is no restriction on the use of other fields not mentioned here (but using other capital-
izations of these field names would cause confusion). Fields Note, Contact (for contacting the
authors/developers) and MailingList are in common use. Some repositories (including CRAN
and R-forge) add their own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but potentially complex
subject.

It is very important that you include license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package, let alone use it.

The package management tools use the concept of ‘free or open source software’ (FOSS, e.g.,
http://en.wikipedia.org/wiki/F0SS) licenses: the idea being that some users of R and its
packages want to restrict themselves to such software. Others need to ensure that there are no
restrictions stopping them using a package, e.g. forbidding commercial or military use. It is a
central tenet of FOSS software that there are no restrictions on users nor usage.

Do not use the ‘License’ field for information on copyright holders: if needed, use a
‘Copyright’ field.

The mandatory ‘License’ field in the DESCRIPTION file should specify the license of the pack-
age in a standardized form. Alternatives are indicated via vertical bars. Individual specifications
must be one of

e One of the “standard” short specifications
GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0
BSD_2_clause BSD_3_clause MIT
as made available via http://www.R-project.org/Licenses/ and contained in subdirec-
tory share/licenses of the R source or home directory.
e The names or abbreviations of other licenses contained in the license data base in file
share/licenses/license.db in the R source or home directory, possibly (for versioned

http://www.acm.org/class/
http://www.aeaweb.org/journal/jel_class_system.html
http://www.aeaweb.org/journal/jel_class_system.html
http://www.ams.org/msc/
http://tools.ietf.org/html/rfc5646
http://en.wikipedia.org/wiki/IETF_language_tag
http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/ISO_639-3
http://en.wikipedia.org/wiki/FOSS
http://www.R-project.org/Licenses/

Chapter 1: Creating R packages 8

licenses) followed by a version restriction of the form ‘(op v)’ with ‘op’ one of the comparison
operators ‘<’, ‘<=7 >’ >=’ ‘==’ or ‘=" and ‘v’ a numeric version specification (strings of
non-negative integers separated by ¢.’), possibly combined via ,’ (see below for an example).
For versioned licenses, one can also specify the name followed by the version, or combine

an existing abbreviation and the version with a ‘-’.

Abbreviations GPL and LGPL are ambiguous and usually taken to mean any version of the
license: but it is better not to use them.

e One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named LICENSE or
LICENCE in the package (source and installation) top-level directory.

e The string ‘Unlimited’, meaning that there are no restrictions on distribution or use other
than those imposed by relevant laws (including copyright laws).

If a package license restricts a base license (where permitted, e.g., using GPL-3 or AGPL-3
with an attribution clause), the additional terms should be placed in file LICENSE (or LICENCE),
and the string ‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be appended to the
corresponding individual license specification. Note that several commonly used licenses do not
permit restrictions: this includes GPL-2 and hence any specification which includes it.

Examples of standardized specifications include

License: GPL-2

License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE

License: GPL (>= 2) | BSD_3_clause + file LICENSE
License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized
in some jurisdictions.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use of
such dependencies are evident to people reading your DESCRIPTION file.

Fields ‘License_is_F0SS’ and ‘License_restricts_use’ may be added by repositories
where information cannot be computed from the name of the license. ‘License_is_F0SS: yes’
is used for licenses which are known to be FOSS, and ‘License_restricts_use’ can have values
‘yes’ or ‘no’ if the LICENSE file is known to restrict users or usage, or known not to. These are
used by, e.g., the available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the license of the package. To avoid
any confusion only include such a file if it is referred to in the ‘License’ field of the DESCRIPTION
file.

Whereas you should feel free to include a license file in your source distribution, please do
not arrange to install yet another copy of the GNU COPYING or COPYING.LIB files but refer to
the copies on http://www.R-project.org/Licenses/ and included in the R distribution (in
directory share/licenses). Since files named LICENSE or LICENCE will be installed, do not use
these names for standard license files. To include comments about the licensing rather than the
body of a license, use a file named something like LICENSE.note.

A few “standard” licenses are rather license templates which need additional information to
be completed via ‘+ file LICENSE'.

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names which this package depends
on. Those packages will be attached before the current package when library or require is
called. Fach package name may be optionally followed by a comment in parentheses specifying

http://www.R-project.org/Licenses/

Chapter 1: Creating R packages 9

a version requirement. The comment should contain a comparison operator, whitespace and a
valid version number, e.g. ‘MASS (>= 3.1-20)".

The ‘Depends’ field can also specify a dependence on a certain version of R — e.g., if the
package works only with R version 3.0.0 or later, include ‘R (>= 3.0.0)’ in the ‘Depends’ field.
You can also require a certain SVN revision for R-devel or R-patched, e.g. ‘R (>=2.14.0), R
(>= r56550)’ requires a version later than R-devel of late July 2011 (including released versions
of 2.14.0).

It makes no sense to declare a dependence on R without a version specification, nor on the
package base: this is an R package and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’ field, for example to give upper
and lower bounds on acceptable versions.

Both library and the R package checking facilities use this field: hence it is an error to use
improper syntax or misuse the ‘Depends’ field for comments on other software that might be
needed. The R INSTALL facilities check if the version of R used is recent enough for the package
being installed, and the list of packages which is specified will be attached (after checking version
requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in the
NAMESPACE file) but which do not need to be attached. Namespaces accessed by the ‘::’ and
‘:::7 operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally this
field will include all the standard packages that are used, and it is important to include S4-using
packages (as their class definitions can change and the DESCRIPTION file is used to decide which
packages to re-install when this happens). Packages declared in the ‘Depends’ field should not
also be in the ‘Imports’ field. Version requirements can be specified and are checked when the
namespace is loaded (since R >= 3.0.0).

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are not neces-
sarily needed. This includes packages used only in examples, tests or vignettes (see Section 1.4
[Writing package vignettes|, page 33), and packages loaded in the body of functions. E.g., sup-
pose an example from package foo uses a dataset from package bar. Then it is not necessary
to have bar use foo unless one wants to execute all the examples/tests/vignettes: it is useful to
have bar, but not necessary. Version requirements can be specified, and will be used by R CMD
check. Note that someone wanting to run the examples/tests/vignettes may not have a sug-
gested package available (and it may not even be possible to install it for that platform), so it is
desirable that the use of suggested packages is made conditional via if (require (pkgname))).

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by
providing methods for classes from these packages, or ways to handle objects from these packages
(so several packages have ‘Enhances: chron’ because they can handle datetime objects from
chron even though they prefer R’s native datetime functions). Version requirements can be
specified, but are currently not used. Such packages cannot be required to check the package:
any tests which use them must be conditional on the presence of the package. (If your tests use
e.g. a dataset from another package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are
e A package should be listed in only one of these fields.

e Packages whose namespace only is needed to load the package using library (pkgname)
should be listed in the ‘Imports’ field and not in the ‘Depends’ field. Packages listed
in imports or importFrom directives in the NAMESPACE file should almost always be in
‘Imports’ and not ‘Depends’.

e Packages that need to be attached to successfully load the package using library (pkgname)
must be listed in the ‘Depends’ field.

http://CRAN.R-project.org/package=chron

Chapter 1: Creating R packages 10

e All packages that are needed” to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples
or tests conditionally (e.g. via if (require(pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

In particular, packages providing “only” data for examples or vignettes should be listed in
‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are used by library when it
loads the package, and install.packages checks versions for the ‘Depends’, ‘Imports’ and (for
dependencies = TRUE) ‘Suggests’ fields.

It is increasingly important that the information in these fields is complete and accurate:
it is for example used to compute which packages depend on an updated package and which
packages can safely be installed in parallel.

This scheme was developed before all packages had namespaces (R 2.14.0 in October 2011),
and good practice changed once that was in place.

Field ‘Depends’ should nowadays be used rarely, only for packages which are intended to be
put on the search path to make their facilities available to the end user (and not to the package
itself): for example it makes sense that a user of package latticeExtra would want the functions
of package lattice made available.

Almost always packages mentioned in ‘Depends’ should also be imported from in the
NAMESPACE file: this ensures that any needed parts of those packages are available when some
other package imports the current package.

The ‘Imports’ field should not contain packages which are not imported from (via the
NAMESPACE file or : : or ::: operators), as all the packages listed in that field need to be installed
for the current package to be installed. (This is checked by R CMD check.)

R code in the package should call 1ibrary or require only exceptionally. Such calls are
never needed for packages listed in ‘Depends’ as they will already be on the search path. It used
to be common practice to use require calls for packages listed in ‘suggests’ in functions which
used their functionality, but nowadays it is better to access such functionality wvia :: calls.

A package that wishes to make use of header files in other packages needs to declare them as
a comma-separated list in the field ‘LinkingTo’ in the DESCRIPTION file. For example

LinkingTo: 1linkl, 1link2

As from R 3.0.2 the ‘LinkingTo’ field can have a version requirement which is checked at
installation. (In earlier versions of R it would cause the specification to be ignored.)

Specifying a package in ‘LinkingTo’ suffices if these are C++ headers containing source code
or static linking is done at installation: the packages do not need to be (and usually should not
be) listed in the ‘Depends’ or ‘Imports’ fields. This includes CRAN packages BH and almost
all users of ReppArmadillo and ReppEigen.

For another use of ‘LinkingTo’ see Section 5.4.2 [Linking to native routines in other packages],
page 98.

7 This includes all packages directly called by library and require calls, as well as data obtained via
data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are subtler
uses which it will not detect: e.g. if package A uses package B and makes use of functionality in package B
which uses package C which package B suggests or enhances, then package C needs to be in the ‘Suggests’
list for package A. Nor will undeclared uses in included files be reported, nor unconditional uses of packages
listed under ‘Enhances’.

http://CRAN.R-project.org/package=latticeExtra
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=BH
http://CRAN.R-project.org/package=RcppArmadillo
http://CRAN.R-project.org/package=RcppEigen

Chapter 1: Creating R packages 11

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently interesting object in the package,
giving its name and a description (functions such as print methods not usually called explicitly
might not be included). Normally this file is missing and the corresponding information is auto-
matically generated from the documentation sources (using tools: :Rdindex()) when installing
from source.

The file is part of the information given by library(help = pkgname).

Rather than editing this file, it is preferable to put customized information about the package
into an overview help page (see Section 2.1.4 [Documenting packages|, page 59) and/or a vignette
(see Section 1.4 [Writing package vignettes|, page 33).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code files to be installed must start with an
ASCII (lower or upper case) letter or digit and have one of the extensions® .R, .S, .q, .r, or .s.
We recommend using . R, as this extension seems to be not used by any other software. It should
be possible to read in the files using source(), so R objects must be created by assignments.
Note that there need be no connection between the name of the file and the R objects created
by it. Ideally, the R code files should only directly assign R objects and definitely should not
call functions with side effects such as require and options. If computations are required to
create objects these can use code ‘earlier’ in the package (see the ‘Collate’ field) plus functions
in the ‘Depends’ packages provided that the objects created do not depend on those packages
except via namespace imports.

Two exceptions are allowed: if the R subdirectory contains a file sysdata.rda (a
saved image of one or more R objects: please use suitable compression as suggested by
tools: :resaveRdaFiles, an see also ‘SysDataCompression’ DESCRIPTION field.) this will be
lazy-loaded into the namespace environment — this is intended for system datasets that are not
intended to be user-accessible via data. Also, files ending in ‘.in’ will be allowed in the R
directory to allow a configure script to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments, but then the comments may not
be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will normally® fail
when the package is installed. Any byte will be allowed in a quoted character string but \uxxxx
escapes should be used for non-ASCII characters. However, non-ASCII character strings may not
be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.5.3
[Load hooks], page 38.

The man subdirectory should contain (only) documentation files for the objects in the package
in R documentation (Rd) format. The documentation filenames must start with an ASCII (lower
or upper case) letter or digit and have the extension .Rd (the default) or .rd. Further, the names
must be valid in ‘file://’ URLs, which means'® they must be entirely ASCII and not contain
‘%’. See Chapter 2 [Writing R documentation files|, page 53, for more information. Note that all
user-level objects in a package should be documented; if a package pkg contains user-level objects
which are for “internal” use only, it should provide a file pkg-internal.Rd which documents all
such objects, and clearly states that these are not meant to be called by the user. See e.g. the
sources for package grid in the R distribution. Note that packages which use internal objects

8 Extensions .S and .s arise from code originally written for S(-PLUS), but are commonly used for assembler

code. Extension .q was used for S, which at one time was tentatively called QPE.

This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi charset.

10 More precisely, they can contain the English alphanumeric characters and the symbols ‘¢ - _ . + ! > () , ;

=&

Chapter 1: Creating R packages 12

extensively should not export those objects from their namespace, when they do not need to be
documented (see Section 1.5 [Package namespaces|, page 36).

Having a man directory containing no documentation files may give an installation error.
The R and man subdirectories may contain OS-specific subdirectories named unix or windows.

The sources and headers for the compiled code are in src, plus optionally a file Makevars or
Makefile. When a package is installed using R CMD INSTALL, make is used to control compila-
tion and linking into a shared object for loading into R. There are default make variables and
rules for this (determined when R is configured and recorded in R_HOME/etcR_ARCH/Makeconf),
providing support for C, C++, FORTRAN 77, Fortran 9x'*, Objective C and Objective C++12
with associated extensions .c, .cc or .cpp, .f, .£90 or .f95, .m, and .mm, respectively. We
recommend using .h for headers, also for C++'* or Fortran 9x include files. (Use of extension
.C for C++ is no longer supported.) Files in the src directory should not be hidden (start with
a dot), and hidden files will under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package, and we do not support using both C++ and Fortran 9x. Because R itself uses it, we
know that C and FORTRAN 77 can be used together and mixing C and C++ seems to be widely
successful.

If your code needs to depend on the platform there are certain defines which can used in C
or C++. On all Windows builds (even 64-bit ones) ‘_WIN32’ will be defined: on 64-bit Windows
builds also ‘_WIN64’, and on OS X ‘__APPLE__’ is defined.'*

The default rules can be tweaked by setting macros'® in a file src/Makevars (see Section 1.2.1
[Using Makevars|, page 18). Note that this mechanism should be general enough to eliminate the
need for a package-specific src/Makefile. If such a file is to be distributed, considerable care is
needed to make it general enough to work on all R platforms. If it has any targets at all, it should
have an appropriate first target named ‘all’ and a (possibly empty) target ‘clean’ which removes
all files generated by running make (to be used by ‘R CMD INSTALL --clean’ and ‘R CMD INSTALL
--preclean’). There are platform-specific file names on Windows: src/Makevars.win takes
precedence over src/Makevars and src/Makefile.win must be used. Some make programs
require makefiles to have a complete final line, including a newline.

A few packages use the src directory for purposes other than making a shared object (e.g.
to create executables). Such packages should have files src/Makefile and src/Makefile.win
(unless intended for only Unix-alikes or only Windows).

In very special cases packages may create binary files other than the shared objects/DLLs
in the src directory. Such files will not be installed in a multi-arch setting since R CMD INSTALL
--1libs-only is used to merge multiple architectures and it only copies shared objects/DLLs.
If a package wants to install other binaries (for example executable programs), it should pro-
vide an R script src/install.libs.R which will be run as part of the installation in the src
build directory instead of copying the shared objects/DLLs. The script is run in a separate
R environment containing the following variables: R_PACKAGE_NAME (the name of the package),
R_PACKAGE_SOURCE (the path to the source directory of the package), R_PACKAGE_DIR (the path
of the target installation directory of the package), R_ARCH (the arch-dependent part of the

1 Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it to FORTRAN. Only

FORTRAN 77 (which we write in upper case) is supported on all platforms, but most also support Fortran-95
(for which we use title case). If you want to ship Ratfor source files, please do so in a subdirectory of src and
not in the main subdirectory.
12
13

14

either or both of which may not be supported on particular platforms
Using .hpp is not guaranteed to be portable.

There is also ‘__APPLE_CC__’, but that indicates a compiler with Apple-specific features, not the OS. It is used
in Rinlinedfuns.h.

15 the POSIX terminology, called ‘make variables’ by GNU make.

Chapter 1: Creating R packages 13

path, often empty), SHLIB_EXT (the extension of shared objects) and WINDOWS (TRUE on Win-
dows, FALSE elsewhere). Something close to the default behavior could be replicated with the
following src/install.libs.R file:

files <- Sys.glob(pasteO("x", SHLIB_EXT))
dest <- file.path(R_PACKAGE_DIR, pasteO(’libs’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if(file.exists("symbols.rds"))

file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the lines of

execs <- c("one", "two", "three")

if (WINDOWS) execs <- pasteO(execs, ".exe")

if (any(file.exists(execs))) {
dest <- file.path(R_PACKAGE_DIR, paste0O(’bin’, R_ARCH)
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(execs, dest, overwrite = TRUE)

}
Note the use of architecture-specific subdirectories if bin where needed.
The data subdirectory is for data files: See Section 1.1.6 [Data in packages|, page 14.

The demo subdirectory is for R scripts (for running vie demo()) that demonstrate some of
the functionality of the package. Demos may be interactive and are not checked automatically,
so if testing is desired use code in the tests directory to achieve this. The script files must start
with a (lower or upper case) letter and have one of the extensions .R or .r. If present, the demo
subdirectory should also have a 00Index file with one line for each demo, giving its name and
a description separated by white space. (Note that it is not possible to generate this index file
automatically.) Note that a demo does not have a specified encoding and so should be an ASCII
file (see Section 1.6.3 [Encoding issues|, page 46). As from R 3.0.0 demo () will use the package
encoding if there is one, but this is mainly useful for non-ASCII comments.

The contents of the inst subdirectory will be copied recursively to the installation directory.
Subdirectories of inst should not interfere with those used by R (currently, R, data, demo, exec,
libs, man, help, html and Meta, and earlier versions used latex, R-ex). The copying of the
inst happens after src is built so its Makefile can create files to be installed. To exclude
files from being installed, one can specify a list of exclude patterns in file .Rinstignore in the
top-level source directory. These patterns should be Perl-like regular expressions (see the help
for regexp in R for the precise details), one per line, to be matched case-insensitively! against
the file and directory paths, e.g. doc/.*[.]png$ will exclude all PNG files in inst/doc based
on the extension.

Note that with the exceptions of INDEX, LICENSE/LICENCE and NEWS, information files at the
top level of the package will not be installed and so not be known to users of Windows and OS
X compiled packages (and not seen by those who use R CMD INSTALL or install.packages on
the tarball). So any information files you wish an end user to see should be included in inst.
Note that if the named exceptions also occur in inst, the version in inst will be that seen in
the installed package.

Things you might like to add to inst are a CITATION file for use by the citation function,
and a NEWS.Rd file for use by the news function.

Another file sometimes needed in inst is AUTHORS or COPYRIGHTS to specify the authors or
copyright holders when this is too complex to put in the DESCRIPTION file.

16 on all platforms from R 3.1.0

Chapter 1: Creating R packages 14

Subdirectory tests is for additional package-specific test code, similar to the specific tests
that come with the R distribution. Test code can either be provided directly in a .R file, or via
a .Rin file containing code which in turn creates the corresponding .R file (e.g., by collecting
all function objects in the package and then calling them with the strangest arguments). The
results of running a .R file are written to a .Rout file. If there is a corresponding!” .Rout.save
file, these two are compared, with differences being reported but not causing an error. The
directory tests is copied to the check area, and the tests are run with the copy as the working
directory and with R_LIBS set to ensure that the copy of the package installed during testing
will be found by library (pkg_name). Note that the package-specific tests are run in a vanilla R
session without setting the random-number seed, so tests which use random numbers will need
to set the seed to obtain reproducible results (and it can be helpful to do so in all cases, to avoid
occasional failures when tests are run).

If directory tests has a subdirectory Examples containing a file pkg-Ex.Rout.save, this is
compared to the output file for running the examples when the latter are checked. Reference
output should be produced without having the --timings option set (and note that --as-cran
sets it).

Subdirectory exec could contain additional executable scripts the package needs, typically
scripts for interpreters such as the shell, Perl, or T'cl. This mechanism is currently used only by
a very few packages. NB: only files (and not directories) under exec are installed (and those
with names starting with a dot are ignored), and they are all marked as executable (mode 755,
moderated by ‘umask’) on POSIX platforms. Note too that this is not suitable for executable
programs since some platforms (including Windows) support multiple architectures using the
same installed package directory.

Subdirectory po is used for files related to localization: see Section 1.8 [Internationalization],
page 49.

Subdirectory tools is the preferred place for auxiliary files needed during configuration, and
also for sources need to re-create scripts (e.g. M4 files for autoconf).

1.1.6 Data in packages

The data subdirectory is for data files, either to be made available via lazy-loading or for loading
using data(). (The choice is made by the ‘LazyData’ field in the DESCRIPTION file: the default
is not to do so.) It should not be used for other data files needed by the package, and the
convention has grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension: plain R code (.R or
.r), tables (.tab, .txt, or .csv, see ?data for the file formats, and note that .csv is not the
standard'® CSV format), or save() images (.RData or .rda). The files should not be hidden
(have names starting with a dot). Note that R code should be “self-sufficient” and not make use
of extra functionality provided by the package, so that the data file can also be used without
having to load the package or its namespace.

Images (extensions .RData or .rda) can contain references to the namespaces of packages
that were used to create them. Preferably there should be no such references in data files, and in
any case they should only be to packages listed in the Depends and Imports fields, as otherwise
it may be impossible to install the package. To check for such references, load all the images
into a vanilla R session, and look at the output of loadedNamespaces ().

If your data files are large and you are not using ‘LazyData’ you can speed up installation
by providing a file datalist in the data subdirectory. This should have one line per topic that

T The best way to generate such a file is to copy the .Rout from a successful run of R CMD check. If you want to
generate it separately, do run R with options --vanilla --slave and with environment variable LANGUAGE=en
set to get messages in English.

18 e.g http://tools.ietf.org/html/rfc4180.

http://tools.ietf.org/html/rfc4180

Chapter 1: Creating R packages 15

data() will find, in the format ‘foo’ if data(foo) provides ‘foo’, or ‘foo: bar bah’if data(foo)
provides ‘bar’ and ‘bah’. R CMD build will automatically add a datalist file to data directories
of over 1Mb, using the function tools::add_datalist.

Tables (.tab, .txt, or .csv files) can be compressed by gzip, bzip2 or xz, optionally with
additional extension .gz, .bz2 or .xz.

If your package is to be distributed, do consider the resource implications of large datasets
for your users: they can make packages very slow to download and use up unwelcome amounts
of storage space, as well as taking many seconds to load. It is normally best to distribute large
datasets as .rda images prepared by save(, compress = TRUE) (the default). Using bzip2 or
xz compression will usually reduce the size of both the package tarball and the installed package,
in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Some packages using ‘LazyData’ will benefit from using a form of compression other than
gzip in the installed lazy-loading database. This can be selected by the --data-compress
option to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the DESCRIPTION file.
Useful values are bzip2, xz and the default, gzip. The only way to discover which is best is to
try them all and look at the size of the pkgname/data/Rdata.rdb file.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB, the limit for the format on 32-bit platforms and all platforms prior to R 3.0.0).

The analogue for sysdata.rda is field ‘SysDataCompression’: the default (since R 2.12.2)
is xz for files bigger than 1MB otherwise gzip.

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, FORTRAN, Fortran 95 . ..) is included in the src
subdirectory and discussed elsewhere in this document.

Subdirectory exec could be used for scripts for interpreters such as the shell (e.g.
arulesSequences), BUGS, Java, JavaScript, Matlab, Perl (FEST), php (amap), Python or
Tcl, or even R. However, it seems more common to use the inst directory, for example
AMA/inst/java, WriteXLS/inst/Perl, Amelia/inst/tklibs, NMF/inst/matlab and
emdbook/inst/BUGS.

If your package requires one of these interpreters or an extension then this should be declared
in the ‘SystemRequirements’ field of its DESCRIPTION file. Windows and Mac users should be
aware that the Tcl extensions ‘BWidget’ and ‘Tktable’ which are currently included with the
R for Windows and OS X installers are extensions and do need to be declared. ‘Tktable’ did
ship as part of the X11-based Tcl/Tk provided on CRAN for OS X prior to R 3.0.0, but you will
need to tell your users how to make use of it:

> addTclPath(’/usr/local/lib/Tktable2.97)
> tclRequire(’Tktable’)
<Tcl> 2.9
It should work with no further user action as from R 3.0.0.

‘BWidget’ needs to be installed by the user for OS X with R 2.x.y and on other OSes. This
is fairly easy to do: first find the Tcl/Tk search path:

library(tcltk)
strsplit(tclvalue(’auto_path’), " ") [[1]]

then download the sources from http://sourceforge.net/projects/tcllib/files/BWidget/
and at the command line run

http://CRAN.R-project.org/package=arulesSequences
http://CRAN.R-project.org/package=FEST
http://CRAN.R-project.org/package=amap
http://sourceforge.net/projects/tcllib/files/BWidget/

Chapter 1: Creating R packages 16

tar xf bwidget-1.9.6.tar.gz
sudo mv bwidget-1.9.6 /usr/local/lib

substituting a location on the Tcl/Tk search path for /usr/local/1ib if needed.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about the
Windows port of R.

If your package needs some system-dependent configuration before installation you can in-
clude an executable (Bourne shell) script configure in your package which (if present) is ex-
ecuted by R CMD INSTALL before any other action is performed. This can be a script created
by the Autoconf mechanism, but may also be a script written by yourself. Use this to detect
if any nonstandard libraries are present such that corresponding code in the package can be
disabled at install time rather than giving error messages when the package is compiled or used.
To summarize, the full power of Autoconf is available for your extension package (including
variable substitution, searching for libraries, etc.).

Under a Unix-alike only, an executable (Bourne shell) script cleanup is executed as the last
thing by R CMD INSTALL if option --clean was given, and by R CMD build when preparing the
package for building from its source.

As an example consider we want to use functionality provided by a (C or FORTRAN) library
foo. Using Autoconf, we can create a configure script which checks for the library, sets variable
HAVE_F0O0 to TRUE if it was found and to FALSE otherwise, and then substitutes this value into
output files (by replacing instances of ‘@HAVE_F00@’ in input files with the value of HAVE_F00).
For example, if a function named bar is to be made available by linking against library foo (i.e.,
using -1fo0), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])
AC_SUBST (HAVE_F00)

AC_CONFIG_FILES([foo.R])
AC_OUTPUT

in configure.ac (assuming Autoconf 2.50 or later).
The definition of the respective R function in foo.R.in could be

foo <- function(x) {
if (! @HAVE_F00@)
stop("Sorry, library ’foo’ is not available"))

From this file configure creates the actual R source file foo.R looking like

foo <- function(x) {
if ('FALSE)
stop("Sorry, library ’foo’ is not available"))

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respectively.

You will very likely need to ensure that the same C compiler and compiler flags are used in
the configure tests as when compiling R or your package. Under a Unix-alike, you can achieve
this by including the following fragment early in configure.ac

Chapter 1: Creating R packages 17

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC*
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version
of R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’ might
contain spaces.)

If your code does load checks then you may also need
LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS®

and packages written with C++ need to pick up the details for the C++ compiler and switch the
current language to C++ by

AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or may
not be written to avoid C++ name-mangling.

You can use R CMD config for getting the value of the basic configuration variables, and also
the header and library flags necessary for linking a front-end executable program against R, see
R CMD config --help for details.

To check for an external BLAS library using the ACX_BLAS macro from the official Autoconf
Macro Archive, one can simply do

F77=‘"${R_HOME}/bin/R" CMD config F77°

AC_PROG_F77

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS®

ACX_BLAS([], AC_MSG_ERROR([could not find your BLAS libraryl, 1))

Note that FLIBS as determined by R must be used to ensure that FORTRAN 77 code works on
all R platforms. Calls to the Autoconf macro AC_F77_LIBRARY_LDFLAGS, which would overwrite
FLIBS, must not be used (and hence e.g. removed from ACX_BLAS). (Recent versions of Autoconf
in fact allow an already set FLIBS to override the test for the FORTRAN linker flags.)

N.B.: If the configure script creates files, e.g. src/Makevars, you do need a cleanup script
to remove them. Otherwise if the package has vignettes, R CMD build will ship the files that are
created. For example, package RODBC has

#!/bin/sh

rm -f config.* src/Makevars src/config.h
As this example shows, configure often creates working files such as config.log.

If your configure script needs auxiliary files, it is recommended that you ship them in a tools
directory (as R itself does).

You should bear in mind that the configure script will not be used on Windows systems. If
your package is to be made publicly available, please give enough information for a user on a
non-Unix-alike platform to configure it manually, or provide a configure.win script to be used
on that platform. (Optionally, there can be a cleanup.win script. Both should be shell scripts
to be executed by ash, which is a minimal version of Bourne-style sh.) When configure.win
is run the environment variables R_HOME (which uses ‘/’ as the file separator), R_ARCH and Use
R_ARCH_BIN will be set. Use R_ARCH to decide if this is a 64-bit build (its value there is ‘/x64’)
and to install DLLs to the correct place (${R_HOME}/1ibs${R_ARCH}). Use R_ARCH_BIN to find
the correct place under the bin directory, e.g. ${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe.

http://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 18

In some rare circumstances, the configuration and cleanup scripts need to know the location
into which the package is being installed. An example of this is a package that uses C code
and creates two shared object/DLLs. Usually, the object that is dynamically loaded by R is
linked against the second, dependent, object. On some systems, we can add the location of this
dependent object to the object that is dynamically loaded by R. This means that each user does
not have to set the value of the LD_LIBRARY_PATH (or equivalent) environment variable, but
that the secondary object is automatically resolved. Another example is when a package installs
support files that are required at run time, and their location is substituted into an R data
structure at installation time. (This happens with the Java Archive files in the Omegahat SJava
package.) The names of the top-level library directory (i.e., specifiable via the ‘-1’ argument)
and the directory of the package itself are made available to the installation scripts via the two
shell /environment variables R_LIBRARY_DIR and R_PACKAGE_DIR. Additionally, the name of the
package (e.g. ‘survival’ or ‘MASS’) being installed is available from the environment variable
R_PACKAGE_NAME. ajuﬂentbfthe value of R_PACKAGE_DIR is always ${R_LIBRARY_DIR}/${R_
PACKAGE_NAME}, but this used not to be the case when versioned installs were allowed. Its main
use is in configure.win scripts for the installation path of external software’s DLLs.) Note
that the value of R_PACKAGE_DIR may contain spaces and other shell-unfriendly characters, and
so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external software.
One tool which is increasingly available on Unix-alikes (but not by default on OS X) to do this
is pkg-config. The configure script will need to test for the presence of the command itself
(see for example package Cairo), and if present it can be asked if the software is installed, of a
suitable version and for compilation/linking flags by e.g.

$ pkg-config --exists ’QtCore >= 4.0.0° # check the status
$ pkg-config --modversion QtCore

4.7.1

$ pkg-config --cflags QtCore

-DQT_SHARED -I/usr/include/QtCore

$ pkg-config --libs QtCore

-1QtCore

Note that pkg-config --1ibs gives the information required to link against the default version
of that library (usually the dynamic one), and pkg-config --static is needed if the static
library is to be used.

Sometimes the name by which the software is known to pkg-config is not what one might
expect (e.g. ‘gtk+-2.0" even for 2.22). To get a complete list use

pkg-config --list-all | sort

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by supplying a file Makevars: also
one of the most common uses of a configure script is to make Makevars from Makevars.in.

A Makevars file is a makefile and is used as one of several makefiles by R CMD SHLIB (which
is called by R CMD INSTALL to compile code in the src directory). It should be written if at all
possible in a portable style, in particular (except for Makevars.win) without the use of GNU
extensions.

The most common use of a Makevars file is to set additional preprocessor options (for example
include paths) for C/C++ files via PKG_CPPFLAGS, and additional compiler flags by setting PKG_
CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS or PKG_FCFLAGS, for C, C++, FORTRAN or Fortran 9x
respectively (see Section 5.5 [Creating shared objects|, page 99).

9

http://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 19

N.B.: Include paths are preprocessor options, not compiler options, and must be set in
PKG_CPPFLAGS as otherwise platform-specific paths (e.g. ‘~I/usr/local/include’) will take
precedence.

Makevars can also be used to set flags for the linker, for example ‘-L’ and ‘-1’ options, via
PKG_LIBS.

When writing a Makevars file for a package you intend to distribute, take care to ensure that
it is not specific to your compiler: flags such as -02 -Wall -pedantic (and all other -W flags:
for the Solaris compiler these are used to pass arguments to compiler phases) are all specific to
GCC.

Also, do not set variables such as CPPFLAGS, CFLAGS etc.: these should be settable by users
(sites) through appropriate personal (site-wide) Makevars files. See Section “Customizing pack-
age compilation” in R Installation and Administration,

There are some macros'® which are set whilst configuring the building of R itself and
are stored in R_HOME/etcR_ARCH/Makeconf. That makefile is included as a Makefile after
Makevars[.win], and the macros it defines can be used in macro assignments and make com-
mand lines in the latter. These include

FLIBS A macro containing the set of libraries need to link FORTRAN code. This may
need to be included in PKG_LIBS: it will normally be included automatically if the
package contains FORTRAN source files.

BLAS_LIBS
A macro containing the BLAS libraries used when building R. This may need to
be included in PXG_LIBS. Beware that if it is empty then the R executable will
contain all the double-precision and double-complex BLAS routines, but no single-
precision nor complex routines. If BLAS_LIBS is included, then FLIBS also needs to
be?® included following it, as most BLAS libraries are written at least partially in

FORTRAN.

LAPACK_LIBS
A macro containing the LAPACK libraries (and paths where appropriate) used when
building R. This may need to be included in PKG_LIBS. It may point to a dynamic
library 1ibRlapack which contains the main double-precision LAPACK routines as
well as those double-complex LAPACK routines needed to build R, or it may point
to an external LAPACK library, or may be empty if an external BLAS library also
contains LAPACK.

[1libRlapack includes all the double-precision LAPACK routines current in 2003: a
list of which routines are included is in file src/modules/lapack/READVME.|

For portability, the macros BLAS_LIBS and FLIBS should always be included after
LAPACK_LIBS (and in that order).

SAFE_FFLAGS
A macro containing flags which are needed to circumvent over-optimization of FOR-
TRAN code: it is typically ‘-g -02 -ffloat-store’ on ‘ix86’ platforms using
gfortran. Note that this is not an additional flag to be used as part of PKG_
FFLAGS, but a replacement for FFLAGS, and that it is intended for the FORTRAN
77 compiler ‘F77’ and not necessarily for the Fortran 90/95 compiler ‘FC’. See the
example later in this section.

19 in POSIX parlance: GNU make calls these ‘make variables’.

20 4t least on Unix-alikes: the Windows build currently resolves such dependencies to a static FORTRAN library

when Rblas.dll is built.

Chapter 1: Creating R packages 20

Setting certain macros in Makevars will prevent R CMD SHLIB setting them: in particular if
Makevars sets ‘OBJECTS’ it will not be set on the make command line. This can be useful in
conjunction with implicit rules to allow other types of source code to be compiled and included
in the shared object. It can also be used to control the set of files which are compiled, either by
excluding some files in src or including some files in subdirectories. For example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is included before the default
makefile and make will call the first target, intended to be all in the default makefile. If you
really need to circumvent that, use a suitable (phony) target all before any actual targets in
Makevars. [win]: for example package fastICA used to have

PKG_LIBS = @BLAS_LIBS@
SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)
all: $(SHLIB)

slamc.o: slamc.f
$(F77) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping. The
Windows equivalent was

all: $(SHLIB)

slamc.o: slamc.f
$(F77) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s internal BLAS was not used).
Note that the first target in Makevars will be called, but for back-compatibility it is best named
all.

If you want to create and then link to a library, say using code in a subdirectory, use something
like
.PHONY: all mylibs

all: $(SHLIB)
$ (SHLIB): mylibs

mylibs:

(cd subdir; make)
Be careful to create all the necessary dependencies, as there is a no guarantee that the depen-
dencies of all will be run in a particular order (and some of the CRAN build machines use
multiple CPUs and parallel makes).

Note that on Windows it is required that Makevars[.win] does create a DLL: this is needed
as it is the only reliable way to ensure that building a DLL succeeded. If you want to use the
src directory for some purpose other than building a DLL, use a Makefile.win file.

It is sometimes useful to have a target ‘clean’ in Makevars or Makevars.win: this will be
used by R CMD build to clean up (a copy of) the package sources. When it is run by build it
will have fewer macros set, in particular not $(SHLIB), nor $(0BJECTS) unless set in the file
itself. It would also be possible to add tasks to the target ‘shlib-clean’ which is run by R CMD
INSTALL and R CMD SHLIB with options --clean and --preclean.

If you want to run R code in Makevars, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path at all,
or it might be the wrong version or architecture. The correct way to do this is via

http://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 21

"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" filename
"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" -e ’R expression’

where $ (R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for 32- and 64-bit code,
for example (GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"

PKG_LIBS = value for 64-bit Windows
else

PKG_LIBS = value for 32-bit Windows
endif

On Windows there is normally a choice between linking to an import library or directly to
a DLL. Where possible, the latter is much more reliable: import libraries are tied to a specific
toolchain, and in particular on 64-bit Windows two different conventions have been commonly
used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/1ib -1xml2
one can use

PKG_LIBS = -L$(XML_DIR)/bin -1xml2
since on Windows -1xxx will look in turn for

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.1lib
libxxx.d1ll
xxx.dll

where the first and second are conventionally import libraries, the third and fourth often static
libraries (with .1ib intended for Visual C++), but might be import libraries. See for example
http://sourceware.org/binutils/docs-2.20/1d/WIN32. htm1#WIN32.

The fly in the ointment is that the DLL might not be named libxxx.d1l1l, and in fact on
32-bit Windows there is a 1ibxml2.d11 whereas on one build for 64-bit Windows the DLL is
called 1ibxm12-2.411. Using import libraries can cover over these differences but can cause
equal difficulties.

If static libraries are available they can save a lot of problems with run-time finding of DLLs,
especially when binary packages are to be distributed and even more when these support both
architectures. Where using DLLs is unavoidable we normally arrange (via configure.win) to
ship them in the same directory as the package DLL.

1.2.1.1 OpenMP support

There is some support for packages which wish to use OpenMP?!. The make macros

SHLIB_OPENMP_CFLAGS

SHLIB_OPENMP_CXXFLAGS

SHLIB_OPENMP_FCFLAGS

SHLIB_OPENMP_FFLAGS
are available for use in src/Makevars or src/Makevars.win. Include the appropriate macro
in PKG_CFLAGS, PKG_CPPFLAGS and so on, and also in PKG_LIBS. C/C++ code that needs to
be conditioned on the use of OpenMP can be used inside #ifdef SUPPORT_OPENMP, a macro
defined in the header Rconfig.h (see Section 6.13 [Platform and version information|, page 139)

2 http: //www . openmp .org/, http://en.wikipedia.org/wiki/OpenMP, https://computing.1llnl.gov/
tutorials/openMP/

http://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32
http://www.openmp.org/
http://en.wikipedia.org/wiki/OpenMP
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Chapter 1: Creating R packages 22

or _OPENMP: note that some toolchains used for R (e.g. clang) have no OpenMP support at all,
not even omp.h.

For example, a package with C code written for OpenMP should have in src/Makevars the
lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
PKG_LIBS = $(SHLIB_QPENMP_CFLAGS)

There is nothing to say what version of OpenMP is supported: version 3.0 (May 2008) is
supported by recent versions of the Linux, Windows and Solaris platforms, but portable packages
cannot assume that end users have recent versions. The compilers used on OS X 10.6 (‘Snow
Leopard’) had partial support for OpenMP 2.5, but this is not enabled in the CRAN build of
R. (Apple have discontinued support for those compilers, and their alternative as from OS X
10.9, clang, has no OpenMP support. A project to add it has been announced at http://
clang-omp.github.io/, but it is unknown when or even if the Apple builds will incorporate
it.)

The performance of OpenMP varies substantially between platforms. Both the Windows
and the Apple OS X (where available) implementations have substantial overheads and are only
beneficial if quite substantial tasks are run in parallel.

Calling any of the R API from threaded code is ‘for experts only’: they will need to read
the source code to determine if it is thread-safe. In particular, code which makes use of the
stack-checking mechanism must not be called from threaded code.

Packages are not standard-alone programs, and an R process could contain more than one
OpenMP-enabled package as well as other components (for example, an optimized BLAS) mak-
ing use of OpenMP. So careful consideration needs to be given to resource usage. OpenMP
works with parallel regions, and for most implementations the default is to use as many threads
as ‘CPUSs’ for such regions. Parallel regions can be nested, although it is common to use only
a single thread below the first level. The correctness of the detected number of ‘CPUs’ and the
assumption that the R process is entitled to use them all are both dubious assumptions. The
best way to limit resources is to limit the overall number of threads available to OpenMP in the
R process: this can be done via environment variable OMP_THREAD_LIMIT, where implemented.??
Alternatively, the number of threads per region can be limited by the environment variable OMP_
NUM_THREADS or API call omp_set_num_threads, or, better, for the regions in your code as part
of their specification. E.g. R uses

#pragma omp parallel for num_threads(nthreads)

That way you only control your own code and not that of other OpenMP users.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads): by
the time we considered adding it several packages were using it unconditionally so it seems that
nowadays it is universally available on POSIX operating systems (hence not Windows).

For reasonably recent versions of gcc and clang the correct specification is

PKG_CPPFLAGS = -pthread
PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT

PKG_LIBS = -lpthread

22 Which it was at the time of writing with GCC, Solaris Studio and Intel compilers.

http://clang-omp.github.io/
http://clang-omp.github.io/

Chapter 1: Creating R packages 23

(and note that the library name is singular). This is what -pthread does on all known current
platforms (although earlier versions of OpenBSD used a different library name).

For a tutorial see https://computing.llnl.gov/tutorials/pthreads/.

POSIX threads are not normally used on Windows, which has its own native concepts
of threads. However, there are two projects implementing pthreads on top of Windows,
pthreads-w32 and winpthreads (a recent part of the MinGW-w64 project).

Whether Windows toolchains implement pthreads is up to the toolchain provider: the cur-
rently recommended toolchain does by default provide it. A make variable SHLIB_PTHREAD_
FLAGS is available: this should be included in both PKG_CPPFLAGS (or the Fortran or F9x equiv-
alents) and PKG_LIBS.

The presence of a working pthreads implementation cannot be unambiguously determined
without testing for yourself: however, that ‘_REENTRANT’ is defined®® in C/C++ code is a good
indication.

See also the comments on thread-safety and performance under OpenMP: on all known R

platforms OpenMP is implemented via pthreads and the known performance issues are in the
latter.

1.2.1.3 Compiling in sub-directories

Package authors fairly often want to organize code in sub-directories of src, for example if they
are including a separate piece of external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects that need to be compiled,

including in sub-directories. For example, CRAN package RSiena has
SOURCES

$(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = sienaO7utilities.o sienaO7internals.o sienaO7setup.o sienaO7models.o $(SOURCES:.cpp=.0)

One problem with that approach is that unless GNU make extensions are used, the source files
need to be listed and kept up-to-date. As in the following from CRAN package lossDev:

OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \
samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \
samplers/RealSlicer0V.o samplers/SliceFactory0V.o samplers/MNorm.o

OBJECTS.distributions = distributions/DSpline.o \
distributions/DChisqrOV.o distributions/DTOV.o \
distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o

0BJECTS.root = RJump.o

OBJECTS = $(0OBJECTS.samplers) $(0BJECTS.distributions) $(OBJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach is
something like
PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Csdp/lib/libsdp.a

Csdp/1ib/libsdp.a
@(cd Csdp/lib && $(MAKE) libsdp.a \
CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")
Note the quotes: the macros can contain spaces, e.g. CC = "gcc -m64 -std=gnu99". Several
authors have forgotten about parallel makes: the static library in the subdirectory must be
made before the shared object ($(SHLIB)) and so the latter must depend on the former. Others
forget the need for position-independent code.

We really do not recommend using src/Makefile instead of src/Makevars, and as the
example above shows, it is not necessary.

23 some Windows toolchains have the typo ‘_REENTRANCE’ instead.

https://computing.llnl.gov/tutorials/pthreads/
http://CRAN.R-project.org/package=RSiena
http://CRAN.R-project.org/package=lossDev

Chapter 1: Creating R packages 24

1.2.2 Configure example

It may be helpful to give an extended example of using a configure script to create a
src/Makevars file: this is based on that in the RODBC package.

The configure.ac file follows: configure is created from this by running autoconf in the
top-level package directory (containing configure.ac).
AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option

odbc_mgr=""

AC_ARG_WITH([odbc-manager],
AC_HELP_STRING([--with-odbc-manager=MGR],
[specify the ODBC manager, e.g. odbc or iodbcl),
[odbc_mgr=$withvall)

if test "$odbc_mgr“ = "odbc" ; then
AC_PATH_PROGS (ODBC_CONFIG, odbc_config)
fi

dnl Select an optional include path, from a configure option

dnl or from an environment variable.

AC_ARG_WITH([odbc-include],
AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],
[the location of ODBC header files]),
[odbc_include_path=$withvall)

RODBC_CPPFLAGS="-I."

if test [-n "$odbc_include_path"] ; then
RODBC_CPPFLAGS="-I. -I${odbc_include_pathl}"

else

if test [-n "${ODBC_INCLUDE}"] ; then
RODBC_CPPFLAGS="-I. -I${0ODBC_INCLUDE}"
fi

fi

dnl ditto for a library path
AC_ARG_WITH([odbc-1ib],
AC_HELP_STRING([--with-odbc-1ib=LIB_PATH],
[the location of ODBC libraries]),
[odbc_1lib_path=$withvall])
if test [-n "$odbc_lib_path"] ; then
LIBS="-L$odbc_lib_path ${LIBS}"
else
if test [-n "${0DBC_LIBS}"] ; then
LIBS="-L${0DBC_LIBS} ${LIBS}"
else
if test -n "${0ODBC_CONFIG}"; then
odbc_lib_path=‘odbc_config --libs | sed s/-lodbc//¢
LIBS="${odbc_lib_path} ${LIBS}"
fi
fi
fi

dnl Now find the compiler and compiler flags to use
: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CcC=‘"${R_HOME}/bin/R" CMD config CC¢
CPP=‘"${R_HOME}/bin/R" CMD config CPP¢
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®
AC_PROG_CC
AC_PROG_CPP

http://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 25

if test -n "${0DBC_CONFIG}"; then
RODBC_CPPFLAGS=‘odbc_config --cflags®

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found
AC_CHECK_HEADERS (sql.h sqglext.h)
if test "${ac_cv_header_sql_h}" = no ||
test "${ac_cv_header_sqlext_h}" = no; then
AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")
fi

dnl search for a library containing an ODBC function
if test [-n "${odbc_mgr}"] ; then
AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,
AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))
else
AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,
AC_MSG_ERROR("no ODBC driver manager found"))
fi

dnl for 64-bit ODBC need SQL[UJLEN, and it is unclear where they are defined.
AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unix0ODBC header

AC_CHECK_SIZEOF (long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST (RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.h])

dnl and do substitution in the src/Makevars.in and src/config.h
AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where src/Makevars.in would be simply
PKG_CPPFLAGS = QRODBC_CPPFLAGS®@
PKG_LIBS = QLIBS@
A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \

--configure-args=’--with-odbc-include=/opt/local/include \
--with-odbc-1ib=/opt/local/1lib --with-odbc-manager=iodbc’ \
RODBC

or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F95 code

R assumes that source files with extension .f are FORTRAN 77, and passes them to the compiler
specified by ‘F77°. On most but not all platforms that compiler will accept Fortran 90/95 code:
some platforms have a separate Fortran 90/95 compiler and a few (by now quite rare®*) platforms
have no Fortran 90/95 support.

This means that portable packages need to be written in correct FORTRAN 77, which will
also be valid Fortran 95. See http://developer .R-project.org/Portability .html for
reference resources. In particular, free source form F95 code is not portable.

On some systems an alternative F95 compiler is available: from the gcc family this might
be gfortran or g95. Configuring R will try to find a compiler which (from its name) appears

24 Cygwin used g77 up to 2011, and some pre-built versions of R for Unix OSes still do.

http://developer.R-project.org/Portability.html

Chapter 1: Creating R packages 26

to be a Fortran 90/95 compiler, and set it in macro ‘FC’. Note that it does not check that such
a compiler is fully (or even partially) compliant with Fortran 90/95. Packages making use of
Fortran 90/95 features should use file extension .£90 or .£95 for the source files: the variable
PKG_FCFLAGS specifies any special flags to be used. There is no guarantee that compiled Fortran
90/95 code can be mixed with any other type of compiled code, nor that a build of R will have
support for such packages.

Some (but not) all compilers specified by the ‘FC’ macro will accept Fortran 2003 or 2008
code: such code should still use file extension .£90 or .£95. For platforms using gfortran, you
may need to include -std=£2003 or -std=£2008 in PKG_FCFLAGS: the default is ‘GNU Fortran’,
Fortran 95 with non-standard extensions. The Solaris £95 compiler ‘accepts some Fortran 2003
features’. Note that the compiler used for OS X <= 10.8 is gfortran 4.2.3 which has limited
Fortran 2003 support (http://gcc.gnu.org/onlinedocs/gcc-4.2.3/gfortran/).

Modern versions of Fortran support modules, whereby compiling one source file creates a
module file which is then included in others. (Module files typically have a .mod extension: they
do depend on the compiler used and so should never be included in a package.) This creates a
dependence which make will not know about and often causes installation with a parallel make
to fail. Thus it is necessary to add explicit dependencies to src/Makevars to tell make the
constraints on the order of compilation. For example, if file iface.f90 creates a module ‘iface’
used by files cmi.f90 and dmi.f90 then src/Makevars needs to contain something like

cmi.o dmi.o: iface.o

1.2.4 Using C++11 code

R can be built without a C++ compiler although one is available (but not necessarily installed)
on all known R platforms. For full portability across platforms, all that can be assumed is
approximate support for the C++98 standard (the widely used g++ deviates considerably from
the standard). Some compilers have a concept of ‘C++03’ (‘essentially a bug fix’) or ‘C++
Technical Report 1’ (TR1), an optional addition to the ‘C++03’ revision which was published
in 2007. Finally a revised standard was published in 2011 and compilers with fairly complete
implementations are becoming available. C++11 added all of the C99 features which are not
otherwise implemented in C++, and C++ compilers commonly accept C99 extensions to C++98.

From version 3.1.0, R provides support for C++11 in packages, in addition to C++98. This
support is not uniform across platforms as it depends on the capabilities of the compiler (see
below). When R is configured, it will determine whether the C++ compiler supports C++11
and which compiler flags, if any, are required to enable C++11 support. For example, recent
versions of g++ or clang++ accept the compiler flag —std=c++11, and earlier versions support a
flag -std=c++0x, but the latter only provides partial support for the C++11 standard.

In order to use C++11 code in a package, the package’s Makevars file (or Makevars.win on
Windows) should include the line

CXX_STD = CXX11

Compilation and linking will then be done with the C++11 compiler. If any other value is
given to the ‘CXX_STD’ macro it will be ignored. (Further options may become available in the
future as the C++ standard evolves.)

Packages without a Makevars file may specify that they require C++11 by including ‘C++11’
in the ‘SystemRequirements’ field of the DESCRIPTION file, e.g.

SystemRequirements: C++11

If a package does have a Makevars[.win] file then setting the make variable ‘CXX_STD’ is
preferred, as it allows R CMD SHLIB to work correctly in the package’s src directory.

The C++11 compiler will be used systematically by R for all C++ code if the environment
variable USE_CXX1X is defined (with any value). Hence this environment variable should be

http://gcc.gnu.org/onlinedocs/gcc-4.2.3/gfortran/

Chapter 1: Creating R packages 27

defined when invoking R CMD SHLIB in the absence of a Makevars file (or Makevars.win on
Windows) if a C++11 compiler is required.

Further control over compilation of C++11 code can be obtained by specifying the macros
‘CXX1X’ and ‘CXX1XSTD’ when R is configured?®, or in a personal or site Makevars file. See Section
“Customizing package compilation” in R Installation and Administration. If C++11 support is
not available then these macros are both empty. Otherwise, ‘CXX1X’ defaults to the same value
as the C++ compiler ‘CXX’ and the flag ‘CXX1XSTD’ defaults to —-std=c++11 or -std=c++0x (the
latter on Windows). It is possible to specify ‘CXX1X’ to be a distinct compiler just for C++11-
using packages, e.g. g++ 4.8.x on Solaris. Note however that different C++ compilers (and even
different versions of the same compiler) often differ in their ABI so their outputs can rarely be
mixed. By setting ‘CXX1XSTD’ it is also possible to choose a different dialect of the standard,
such as -std=gnu++11, or enable experimental support for the next revision (tentatively planned
for 2017) using something like —std=c++1y.

As noted above, support for C++11 varies across platforms. The default compiler®® for OS X
(<= 10.8) is based on GCC 4.2.1 and has no support for anything other than the GNU version
of C++98 and GNU extensions (which include TR1). The default compiler on Windows is GCC
4.6.x and supports the -std=c++0x flag and some C++11 features (see http://gcc.gnu.org/
gcc—4.6/cxx0x_status.html). On these platforms, it is necessary to select a different compiler
for C++11, wia personal or site Makevars files.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed (which checked it can
be loaded). R CMD check will inter alia do this, but you may get more detailed error messages
doing the install directly.

If your package specifies an encoding in its DESCRIPTION file, you should run these tools in a
locale which makes use of that encoding: they may not work at all or may work incorrectly in
other locales (although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with --vanilla in which
none of the user’s startup files are read. If you need R_LIBS set (to find packages
in a non-standard library) you can set it in the environment: also you can use
the check and build environment files (as specified by the environment variables
R_CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files?” ~/.R/check.Renviron
and ~/.R/build.Renviron are used) to set environment variables when using these
utilities.

Note to Windows users: R CMD build may make use of the Windows toolset (see the
“R Installation and Administration” manual) if present and in your path, and it is
required for packages which need it to install (including those with configure.win
or cleanup.win scripts or a src directory) and e.g. need vignettes built.

You may need to set the environment variable TMPDIR to point to a suitable writable
directory with a path not containing spaces — use forward slashes for the separators.
Also, the directory needs to be on a case-honouring file system (some network-
mounted file systems are not).

25 For details of these and related macros, see file config.site in the R sources.
26 0S X 10.7 and later have clang++ but for 10.7 and 10.8 it uses the g++ 4.2.x headers.

27 On systems which use sub-architectures, architecture-specific versions such as ~/.R/check.Renviron.i386
take precedence.

http://gcc.gnu.org/gcc-4.6/cxx0x_status.html
http://gcc.gnu.org/gcc-4.6/cxx0x_status.html

Chapter 1: Creating R packages 28

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work cor-
rectly. It can be run on one or more directories, or compressed package tar archives with
extension .tar.gz, .tgz, .tar.bz2 or .tar.xz.

It is strongly recommended that the final checks are run on a tar archive prepared by R CMD

build.

1.

10.

This runs a series of checks, including

The package is installed. This will warn about missing cross-references and duplicate aliases
in help files.

The file names are checked to be valid across file systems and supported operating system
platforms.

The files and directories are checked for sufficient permissions (Unix-alikes only).

. The files are checked for binary executables, using a suitable version of file if available?®.

(There may be rare false positives.)

The DESCRIPTION file is checked for completeness, and some of its entries for correctness.
Unless installation tests are skipped, checking is aborted if the package dependencies cannot
be resolved at run time. (You may need to set R_LIBS in the environment if dependent
packages are in a separate library tree.) One check is that the package name is not that of
a standard package, nor one of the defunct standard packages (‘ctest’, ‘eda’, ‘1gs’, ‘mle’,
‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’). Another check is that all packages mentioned
in library or requires or from which the NAMESPACE file imports or are called wvia :: or

:: are listed (in ‘Depends’, ‘Imports’, ‘Suggests’): this is not an exhaustive check of the

actual imports.

)

Available index information (in particular, for demos and vignettes) is checked for com-
pleteness.

The package subdirectories are checked for suitable file names and for not being empty. The
checks on file names are controlled by the option —-check-subdirs=value. This defaults to
‘default’, which runs the checks only if checking a tarball: the default can be overridden
by specifying the value as ‘yes’ or ‘no’. Further, the check on the src directory is only
run if the package does not contain a configure script (which corresponds to the value
‘yes-maybe’) and there is no src/Makefile or src/Makefile.in.

To allow a configure script to generate suitable files, files ending in ‘. in’ will be allowed
in the R directory.

A warning is given for directory names that look like R package check directories — many
packages have been submitted to CRAN containing these.

The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package will
always be used in the same locale.

It is checked that the package can be loaded, first with the usual default packages and then
only with package base already loaded. It is checked that the namespace this can be loaded
in an empty session with only the base namespace loaded. (Namespaces and packages can
be loaded very early in the session, before the default packages are available, so packages
should work then.)

The R files are checked for correct calls to 1ibrary.dynam. Package startup functions are
checked for correct argument lists and (incorrect) calls to functions which modify the search

28

A suitable file.exe is part of the Windows toolset: it checks for gfile if a suitable file is not found: the
latter is available in the OpenCSW collection for Solaris at http://www.opencsw.org. The source repository
is ftp://ftp.astron.com/pub/file/.

http://www.opencsw.org
ftp://ftp.astron.com/pub/file/

Chapter 1: Creating R packages 29

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

path or inappropriately generate messages. The R code is checked for possible problems
using codetools. In addition, it is checked whether S3 methods have all arguments of
the corresponding generic, and whether the final argument of replacement functions is
called ‘value’. All foreign function calls (.C, .Fortran, .Call and .External calls) are
tested to see if they have a PACKAGE argument, and if not, whether the appropriate DLL
might be deduced from the namespace of the package. Any other calls are reported. (The
check is generous, and users may want to supplement this by examining the output of
tools: :checkFF ("mypkg", verbose=TRUE), especially if the intention were to always use
a PACKAGE argument)

The R4 files are checked for correct syntax and metadata, including the presence of the
mandatory fields (\name, \alias, \title and \description). The Rd name and title are
checked for being non-empty, and there is a check for missing cross-references (links).

A check is made for missing documentation entries, such as undocumented user-level objects
in the package.

Documentation for functions, data sets, and S4 classes is checked for consistency with the
corresponding code.

It is checked whether all function arguments given in \usage sections of Rd files are docu-
mented in the corresponding \arguments section.

The data directory is checked for non-ASCII characters and for the use of reasonable levels
of compression.

C, C++ and FORTRAN source and header files?® are tested for portable (LF-only) line
endings. If there is a Makefile or Makefile.in or Makevars or Makevars.in file under the
src directory, it is checked for portable line endings and the correct use of ‘$ (BLAS_LIBS)’
and ‘$ (LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which might terminate
R or write to stdout/stderr instead of the console. Note that the latter might give false
positives in that the symbols might be pulled in with external libraries and could never
be called. Windows®® users should note that the Fortran and C++ runtime libraries are
examples of such external libraries.

Some checks are made of the contents of the inst/doc directory. These always include
checking for files that look like leftovers, and if suitable tools (such as qpdf) are available,
checking that the PDF documentation is of minimal size.

The examples provided by the package’s documentation are run. (see Chapter 2 [Writing
R documentation files|, page 53, for information on using \examples to create executable
example code.) If there is a file tests/Examples/pkg-Ex.Rout.save, the output of running
the examples is compared to that file.

Of course, released packages should be able to run at least their own examples. Each
example is run in a ‘clean’ environment (so earlier examples cannot be assumed to have
been run), and with the variables T and F redefined to generate an error unless they are set
in the example: See Section “Logical vectors” in An Introduction to R.

If the package sources contain a tests directory then the tests specified in that directory
are run. (Typically they will consist of a set of .R source files and target output files
.Rout.save.) Please note that the comparison will be done in the end user’s locale, so the
target output files should be ASCII if at all possible.

The code in package vignettes (see Section 1.4 [Writing package vignettes|, page 33) is
executed, and the vignette PDF's re-made from their sources as a check of completeness of

29
30

An exception is made for subdirectories with names starting ‘win’ or ‘Win’.

on most other platforms such runtime libraries are dynamic, but static libraries are currently used on Windows
because the toolchain is not a standard part of the OS.

http://CRAN.R-project.org/package=codetools

Chapter 1: Creating R packages 30

the sources (unless there is a ‘BuildVignettes’ field in the package’s DESCRIPTION file with
a false value). If there is a target output file .Rout.save in the vignette source directory,
the output from running the code in that vignette is compared with the target output file
and any differences are reported (but not recorded in the log file). (If the vignette sources
are in the deprecated location inst/doc, do mark such target output files to not be installed
in .Rinstignore.)

If there is an error®! in executing the R code in vignette foo.ext, a log file foo.ext.log
is created in the check directory. The vignette PDF's are re-made in a copy of the package
sources in the vign_test subdirectory of the check directory, so for further information on
errors look in directory pkgname/vign_test/vignettes. (It is only retained if there are
errors or if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is set to a false value.)

21. The PDF version of the package’s manual is created (to check that the Rd files can be
converted successfully). This needs IXTEX and suitable fonts and ITEX packages to be
installed. See Section “Making the manuals” in R Installation and Administration.

All these tests are run with collation set to the C locale, and for the examples and tests with
environment variable LANGUAGE=en: this is to minimize differences between platforms.

Use R CMD check --help to obtain more information about the usage of the R package
checker. A subset of the checking steps can be selected by adding command-line options. It also
allows customization by setting environment variables _R_CHECK_*_:, as described in Section
“Tools” in R Internals: a set of these customizations similar to those used by CRAN can be
selected by the option --as-cran (which works best if Internet access is available®?). Some
Windows users may need to set environment variable R_WIN_NO_JUNCTIONS to a non-empty
value. The test of cyclic declarations®in DESCRIPTION files needs repositories (including CRAN)
set: do this in ~/.Rprofile, by e.g

options(repos = c(CRAN="http://cran.r-project.org"))

You do need to ensure that the package is checked in a suitable locale if it contains non-ASCII
characters. Such packages are likely to fail some of the checks in a C locale, and R CMD check
will warn if it spots the problem. You should be able to check any package in a UTF-8 locale
(if one is available). Beware that although a C locale is rarely used at a console, it may be the
default if logging in remotely or for batch jobs.

Multiple sub-architectures: On systems which support multiple sub-architectures
(principally Windows), R CMD check will install and check a package which con-
tains compiled code under all available sub-architectures. (Use option --force-
multiarch to force this for packages without compiled code, which are otherwise
only checked under the main sub-architecture.) This will run the loading tests, ex-
amples and tests directory under each installed sub-architecture in turn, and give
an error if any fail. Where environment variables (including perhaps PATH) need to
be set differently for each sub-architecture, these can be set in architecture-specific
files such as R_HOME/etc/1386/Renviron.site.

An alternative approach is to use R CMD check --no-multiarch to check the pri-
mary sub-architecture, and then to use something like R ——arch=x86_64 CMD check
--extra-arch or (Windows) /path/to/R/bin/x64/Rcmd check --extra-arch to
run for each additional sub-architecture just the checks®** which differ by sub-

3L or if option --use-valgrind is used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set

to a true value or if there are differences from a target output file
32 Windows users behind proxies may want to set environment variable R_WIN_INTERNET2 to a non-empty value,
e.g. in “/.R/check_environ.
33

34

For example, in early 2014 gdata declared ‘Imports: gtools’ and gtools declared ‘Imports: gdata’.
loading, examples, tests, vignettes

http://CRAN.R-project.org/package=gdata
http://CRAN.R-project.org/package=gtools

Chapter 1: Creating R packages 31

architecture. (This approach is required for packages which are installed by R CMD
INSTALL --merge-multiarch.)

Where packages need additional commands to install all the sub-architectures these
can be supplied by e.g. -—install-args=--force-biarch.

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs” (.tar.gz files) or in binary form.
The source form can be installed on all platforms with suitable tools and is the usual form for
Unix-like systems; the binary form is platform-specific, and is the more common distribution
form for the Windows and OS X platforms.

Using R CMD build, the R package builder, one can build R package tarballs from their sources
(for example, for subsequent release).

Prior to actually building the package in the standard gzipped tar file format, a few diagnostic
checks and cleanups are performed. In particular, it is tested whether object indices exist and
can be assumed to be up-to-date, and C, C++ and FORTRAN source files and relevant makefiles
in a src directory are tested and converted to LF line-endings if necessary.

Run-time checks whether the package works correctly should be performed using R CMD check
prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns in
file .Rbuildignore in the top-level source directory. These patterns should be Perl-like regular
expressions (see the help for regexp in R for the precise details), one per line, to be matched
case-insensitively®® against the file and directory names relative to the top-level package source
directory. In addition, directories from source control systems3¢ or from eclipse®’, directories
with names ending .Rcheck or 01d or old and files GNUMakefile, Read-and-delete-me or with
base names starting with ‘.#’, or starting and ending with ‘#’, or ending in ‘~’, ‘. bak’ or ‘. swp’,
are excluded by default. In addition, those files in the R, demo and man directories which are
flagged by R CMD check as having invalid names will be excluded.

Use R CMD build --help to obtain more information about the usage of the R package
builder.

Unless R CMD build is invoked with the --no-build-vignettes option (or the package’s
DESCRIPTION contains ‘BuildVignettes: no’ or similar), it will attempt to (re)build the vi-
gnettes (see Section 1.4 [Writing package vignettes|, page 33) in the package. To do so it installs
the current package into a temporary library tree, but any dependent packages need to be
installed in an available library tree (see the Note: at the top of this section).

Similarly, if the .Rd documentation files contain any \Sexpr macros (see Section 2.12 [Dy-
namic pages|, page 66), the package will be temporarily installed to execute them. Post-execution
binary copies of those pages containing build-time macros will be saved in build/partial.rdb.
If there are any install-time or render-time macros, a .pdf version of the package manual will
be built and installed in the build subdirectory. (This allows CRAN or other repositories to
display the manual even if they are unable to install the package.) This can be suppressed by
the option --no-manual or if package’s DESCRIPTION contains ‘BuildManual: no’ or similar.

One of the checks that R CMD build runs is for empty source directories. These are in
most (but not all) cases unintentional, if they are intentional use the option --keep-empty-
dirs (or set the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’, or have a
‘BuildKeepEmpty’ field with a true value in the DESCRIPTION file).

3
3
3

5 on all platforms from R 3.1.0.
6 called CVS or .svn or .arch-ids or .bzr or .git (but not files called .git) or .hg.
7 called .metadata.

Chapter 1: Creating R packages 32

The --resave-data option allows saved images (.rda and .RData files) in the data directory
to be optimized for size. It will also compress tabular files and convert .R files to saved images.
It can take values no, gzip (the default if this option is not supplied, which can be changed
by setting the environment variable _R_BUILD_RESAVE_DATA_) and best (equivalent to giving it
without a value), which chooses the most effective compression. Using best adds a dependence
on R (>=2.10) to the DESCRIPTION file if bzip2 or xz compression is selected for any of the
files. If this is thought undesirable, --resave-data=gzip (which is the default if that option is
not supplied) will do what compression it can with gzip. A package can control how its data
is resaved by supplying a ‘BuildResaveData’ field (with one of the values given earlier in this
paragraph) in its DESCRIPTION file.

The --compact-vignettes option will run tools::compactPDF over the PDF files in
inst/doc (and its subdirectories) to losslessly compress them. This is not enabled by default
(it can be selected by environment variable _R_BUILD_COMPACT_VIGNETTES_) and needs qpdf
(http://qpdf.sourceforge.net/) to be available.

It can be useful to run R CMD check —--check-subdirs=yes on the built tarball as a final
check on the contents.

Where a non-POSIX file system is in use which does not utilize execute permissions, some
care is needed with permissions. This applies on Windows and to e.g. FAT-formatted drives and
SMB-mounted file systems on other OSes. The ‘mode’ of the file recorded in the tarball will be
whatever file.info () returns. On Windows this will record only directories as having execute
permission and on other OSes it is likely that all files have reported ‘mode’ 0777. A particular
issue is packages being built on Windows which are intended to contain executable scripts such as
configure and cleanup: R CMD build ensures those two are recorded with execute permission.

Directory build of the package sources is reserved for use by R CMD build: it contains infor-
mation which may not easily be created when the package is installed, including index informa-
tion on the vignettes and, rarely, information on the help pages and perhaps a copy of the PDF
reference manual (see above).

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of packages. They contain compiled
shared libraries rather than C, C++ or Fortran source code, and the R functions are included
in their installed form. The format and filename are platform-specific; for example, a binary
package for Windows is usually supplied as a .zip file, and for the OS X platform the default
binary package file extension is .tgz.

The recommended method of building binary packages is to use

R CMD INSTALL --build pkg where pkg is either the name of a source tarball (in the usual
.tar.gz format) or the location of the directory of the package source to be built. This operates
by first installing the package and then packing the installed binaries into the appropriate binary
package file for the particular platform.

By default, R CMD INSTALL --build will attempt to install the package into the default library
tree for the local installation of R. This has two implications:

e If the installation is successful, it will overwrite any existing installation of the same package.
e The default library tree must have write permission; if not, the package will not install and

the binary will not be created.

To prevent changes to the present working installation or to provide an install location with
write access, create a suitably located directory with write access and use the -1 option to build
the package in the chosen location. The usage is then

R CMD INSTALL -1 location --build pkg

http://qpdf.sourceforge.net/

Chapter 1: Creating R packages 33

where location is the chosen directory with write access. The package will be installed as a
subdirectory of location, and the package binary will be created in the current directory.

Other options for R CMD INSTALL can be found using R CMD INSTALL --help, and platform-
specific details for special cases (e.g. handling Fortran sources on OS X) are discussed in the
platform-specific FAQs.

Finally, at least one web-based service is available for building binary packages from (checked)
source code: WinBuilder (see http://win-builder.R-project.org/) is able to build Windows
binaries. Note that this is intended for developers on other platforms who do not have access to
Windows but wish to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow the inclusion of documents in
arbitrary other formats. The standard location for these is subdirectory inst/doc of a source
package, the contents will be copied to subdirectory doc when the package is installed. Pointers
from package help indices to the installed documents are automatically created. Documents
in inst/doc can be in arbitrary format, however we strongly recommend providing them in
PDF format, so users on almost all platforms can easily read them. To ensure that they can be
accessed from a browser (as an HTML index is provided), the file names should start with an
ASCII letter and be comprised entirely of ASCII letters or digits or hyphen or underscore.

A special case is package vignettes. Vignettes are documents in PDF or HTML format ob-
tained from plain text literate source files from which R knows how to extract R code and
create output (in PDF/HTML or intermediate (La)TEX). Vignette engines do this work, using
“tangle” and “weave” functions respectively. Sweave, provided by the R distribution, is the
default engine. Since R version 3.0.0, other vignette engines besides Sweave are supported; see
Section 1.4.2 [Non-Sweave vignettes], page 35.

Package vignettes have their sources in subdirectory vignettes of the package sources. Note
that the location of the vignette sources only affects R CMD build and R CMD check: the tarball
built by R CMD build includes in inst/doc the components intended to be installed.

Sweave vignette sources are normally given the file extension .Rnw or .Rtex, but for historical
reasons extensions®® .Snw and .Stex are also recognized. Sweave allows the integration of BTEX
documents: see the Sweave help page in R and the Sweave vignette in package utils for details
on the source document format.

Package vignettes are tested by R CMD check by executing all R code chunks they contain
(except those marked for non-evaluation, e.g., with option eval=FALSE for Sweave). The R
working directory for all vignette tests in R CMD check is a copy of the vignette source directory.
Make sure all files needed to run the R code in the vignette (data sets, ...) are accessible
by either placing them in the inst/doc hierarchy of the source package or by using calls to
system.file(). All other files needed to re-make the vignettes (such as BTEX style files,
BibTEX input files and files for any figures not created by running the code in the vignette)
must be in the vignette source directory.

R CMD build will automatically®® create the (PDF or HTML versions of the) vignettes in
inst/doc for distribution with the package sources. By including the vignette outputs in the
package sources it is not necessary that these can be re-built at install time, i.e., the package au-
thor can use private R packages, screen snapshots and IXTEX extensions which are only available
on his machine.*°

38
39
40

and to avoid problems with case-insensitive file systems, lower-case versions of all these extensions.
unless inhibited by using ‘BuildVignettes: no’ in the DESCRIPTION file.

provided the conditions of the package’s license are met: many, including CRAN, see the omission of source
components as incompatible with an Open Source license.

http://win-builder.R-project.org/

Chapter 1: Creating R packages 34

By default R CMD build will run Sweave on all Sweave vignette source files in vignettes. If
Makefile is found in the vignette source directory, then R CMD build will try to run make after
the Sweave runs, otherwise texi2pdf is run on each .tex file produced.

The first target in the Makefile should take care of both creation of PDF/HTML files and
cleaning up afterwards (including after Sweave), i.e., delete all files that shall not appear in the
final package archive. Note that if the make step runs R it needs to be careful to respect the
environment values of R_LIBS and R_HOME*!. Finally, if there is a Makefile and it has a ‘clean:’
target, make clean is run.

All the usual caveats about including a Makefile apply. It must be portable (no GNU
extensions), use LF line endings and must work correctly with a parallel make: too many authors
have written things like

BAD EXAMPLE
all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

%hopdf: Y.tex
texi2dvi --pdf $*

clean:
rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is working.

Metadata lines can be placed in the source file, preferably in IXTEX comments in the preamble.
One such is a \VignetteIndexEntry of the form

%\VignetteIndexEntry{Using Animal}

Others you may see are \VignettePackage (currently ignored), \VignetteDepends
and \VignetteKeyword (which replaced \VignetteKeywords). These are processed at
package installation time to create the saved data frame Meta/vignette.rds, but only
the \VignetteIndexEntry and \VignetteKeyword statements are currently used. The
\VignetteEngine statement is described in Section 1.4.2 [Non-Sweave vignettes|, page 35.

At install time an HTML index for all vignettes in the package is automatically cre-
ated from the \VignetteIndexEntry statements unless a file index.html exists in directory
inst/doc. This index is linked from the HTML help index for the package. If you do supply a
inst/doc/index.html file it should contain relative links only to files under the installed doc
directory, or perhaps (not really an index) to HTML help files or to the DESCRIPTION file.

Sweave/Stangle allows the document to specify the split=TRUE option to create a single R
file for each code chunk: this will not work for vignettes where it is assumed that each vignette
source generates a single file with the vignette extension replaced by .R.

Do watch that PDFs are not too large — one in a CRAN package was 72MB! This is usually
caused by the inclusion of overly detailed figures, which will not render well in PDF viewers.
Sometimes it is much better to generate fairly high resolution bitmap (PNG, JPEG) figures and
include those in the PDF document.

When R CMD build builds the vignettes, it copies these and the vignette sources from direc-
tory vignettes to inst/doc. To install any other files from the vignettes directory, include
a file vignettes/.install_extras which specifies these as Perl-like regular expressions on one
or more lines. (See the description of the .Rinstignore file for full details.)

41 R_HOME/bin is prepended to the PATH so that references to R or Rscript in the Makefile do make use of the
currently running version of R.

Chapter 1: Creating R packages 35

1.4.1 Encodings and vignettes

Vignettes will in general include descriptive text, R input, R output and figures, ITEX in-
clude files and bibliographic references. As any of these may contain non-ASCII characters, the
handling of encodings can become very complicated.

The vignette source file should be written in ASCII or contain a declaration of the encoding
(see below). This applies even to comments within the source file, since vignette engines process
comments to look for options and metadata lines. When an engine’s weave and tangle functions
are called on the vignette source, it will be converted to the encoding of the current R session.

Stangle() will produce an R code file in the current locale’s encoding: for a non-ASCII
vignette what that is recorded in a comment at the top of the file.

Sweave () will produce a .tex file in the current encoding, or in UTF-8 if that is declared.
Non-ASCII encodings need to be declared to IMTEX via a line like

\usepackage [utf8] {inputenc}

(It is also possible to use the more recent ‘inputenx’ IWTEX package.) If the encoding is UTF-8,
this can also be declared using the declaration

%' \SweaveUTF8

but be aware that IXTEX may require the ‘usepackage’ declaration. R CMD check will warn
about any non-ASCII vignettes it finds which do not have one of these declarations.

Sweave () will also parse and evaluate the R code in each chunk. The R output will also
be in the current locale (or UTF-8 if so declared), and should be covered by the ‘inputenc’
declaration. One thing people often forget is that the R output may not be ASCII even for
ASCII R sources, for many possible reasons. One common one is the use of ‘fancy’ quotes: see
the R help on sQuote: note carefully that it is not portable to declare UTF-8 or CP1252 to
cover such quotes, as their encoding will depend on the locale used to run Sweave(): this can
be circumvented by setting options (useFancyQuotes="UTF-8") in the vignette.

The final issue is the encoding of figures — this applies only to PDF figures and not PNG
etc. The PDF figures will contain declarations for their encoding, but the Sweave option
pdf .encoding may need to be set appropriately: see the help for the pdf () graphics device.

As a real example of the complexities, consider the fortunes package version ‘1.4-0’. That
package did not have a declared encoding, and its vignette was in ASCII. However, the data it
displays are read from a UTF-8 CSV file and will be assumed to be in the current encoding, so
fortunes.tex will be in UTF-8 in any locale. Had read.table been told the data were UTF-8,
fortunes.tex would have been in the locale’s encoding.

1.4.2 Non-Sweave vignettes

R 3.0.0 and later allow vignettes in formats other than Sweave by means of “vignette engines”.
For example knitr version 1.1 or later can create .tex files from a variation on Sweave format,
and .html files from a variation on “markdown” format. These engines replace the Sweave ()
function with other functions to convert vignette source files into IWTEX files for processing into
.pdf, or directly into .pdf or .html files. The Stangle() function is replaced with a function
that extracts the R source from a vignette.

R recognizes non-Sweave vignettes using filename extensions specified by the engine. For
example, the knitr package supports the extension .Rmd (standing for “R markdown”). The
user indicates the vignette engine within the vignette source using a \VignetteEngine line, for
example

%\VignetteEngine{knitr: :knitr}

This specifies the name of a package and an engine to use in place of Sweave in processing the
vignette. As Sweave is the only engine supplied with the R distribution, the package providing

http://CRAN.R-project.org/package=fortunes
http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 36

any other engine must be specified in the ‘VignetteBuilder’ field of the package DESCRIPTION
file, and also specified in the ‘Suggests’, ‘Imports’ or ‘Depends’ field (since its namespace must
be available to build or check your package). If more than one package is specified as a builder,
they will be searched in the order given there. The utils package is always implicitly appended
to the list of builder packages, but may be included earlier to change the search order.

Note that a package with non-Sweave vignettes should always have a ‘VignetteBuilder’
field in the DESCRIPTION file, since this is how R CMD check recognizes that there are vignettes
to be checked: packages listed there are required when the package is checked.

The vignette engine can produce .tex, .pdf, or .html files as output. If it produces .tex
files, R will call texi2pdf to convert them to .pdf for display to the user (unless there is a
Makefile in the vignettes directory).

Package writers who would like to supply vignette engines need to register those engines in
the package .onLoad function. For example, that function could make the call

tools::vignetteEngine("knitr", weave = vweave, tangle = vtangle,
pattern = "[.]Rmd$", package = "knitr")

(The actual registration in knitr is more complicated, because it supports other input formats.)
See the 7tools: :vignetteEngine help topic for details on engine registration.

1.5 Package namespaces

R has a namespace management system for code in packages. This system allows the package
writer to specify which variables in the package should be exported to make them available to
package users, and which variables should be imported from other packages.

The mechanism for specifying a namespace for a package is to place a NAMESPACE file in the
top level package directory. This file contains namespace directives describing the imports and
exports of the namespace. Additional directives register any shared objects to be loaded and
any S3-style methods that are provided. Note that although the file looks like R code (and often
has R-style comments) it is not processed as R code. Only very simple conditional processing
of if statements is implemented.

Packages are loaded and attached to the search path by calling 1ibrary or require. Only the
exported variables are placed in the attached frame. Loading a package that imports variables
from other packages will cause these other packages to be loaded as well (unless they have
already been loaded), but they will not be placed on the search path by these implicit loads.

Namespaces are sealed once they are loaded. Sealing means that imports and exports cannot
be changed and that internal variable bindings cannot be changed. Sealing allows a simpler
implementation strategy for the namespace mechanism. Sealing also allows code analysis and
compilation tools to accurately identify the definition corresponding to a global variable reference
in a function body.

The namespace controls the search strategy for variables used by functions in the package.
If not found locally, R searches the package namespace first, then the imports, then the base
namespace and then the normal search path.

Prior to R 2.14.0, namespaces were optional in packages: a default namespace was generated
on installation in 2.14.x and 2.15.x. As from 3.0.0 a namespace is mandatory.

1.5.1 Specifying imports and exports
Exports are specified using the export directive in the NAMESPACE file. A directive of the form
export(f, g)

specifies that the variables f and g are to be exported. (Note that variable names may be
quoted, and reserved words and non-standard names such as [<-.fractions must be.)

http://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 37

For packages with many variables to export it may be more convenient to specify the names
to export with a regular expression using exportPattern. The directive

exportPattern("~[~\\.]")

exports all variables that do not start with a period. However, such broad patterns are not
recommended for production code: it is better to list all exports or use narrowly-defined
groups. (This pattern applies to S4 classes.) Beware of patterns which include names start-
ing with a period: some of these are internal-only variables and should never be exported, e.g.
‘.__S3MethodsTable__.’ (and the code nowadays excludes known cases).

Packages implicitly import the base namespace. Variables exported from other packages
with namespaces need to be imported explicitly using the directives import and importFrom.
The import directive imports all exported variables from the specified package(s). Thus the
directives

import (foo, bar)
specifies that all exported variables in the packages foo and bar are to be imported. If only

some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables £ and g of the package foo are to be imported. Using
importFrom selectively rather than import is good practice.

It is possible to export variables from a namespace which it has imported from other name-
spaces: this has to be done explicitly and not via exportPattern.

If a package only needs a few objects from another package it can use a fully qualified variable
reference in the code instead of a formal import. A fully qualified reference to the function f in
package foo is of the form foo::f. This is slightly less efficient than a formal import and also
loses the advantage of recording all dependencies in the NAMESPACE file (but they still need to be
recorded in the DESCRIPTION file). Evaluating foo::f will cause package foo to be loaded, but
not attached, if it was not loaded already—this can be an advantage in delaying the loading of
a rarely used package.

Using foo:::f instead of foo::f allows access to unexported objects. This is generally not
recommended, as the semantics of unexported objects may be changed by the package author
in routine maintenance.

1.5.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods defined
in a package that is imported but not attached to the search path. To ensure that these methods
are available the packages defining the methods should ensure that the generics are imported
and register the methods using S3method directives. If a package defines a function print.foo
intended to be used as a print method for class foo, then the directive

S3method (print, foo)
ensures that the method is registered and available for UseMethod dispatch, and the function
print.foo does not need to be exported. Since the generic print is defined in base it does not
need to be imported explicitly.

(Note that function and class names may be quoted, and reserved words and non-standard
names such as [<- and function must be.)

It is possible to specify a third argument to S3method, the function to be used as the method,
for example

S3method (print, check_so_symbols, .print.via.format)
when print.check_so_symbols is not needed.

There used to be a limit on the number of S3method directives: it was 500 prior to R 3.0.2.

Chapter 1: Creating R packages 38

1.5.3 Load hooks

There are a number of hooks called as packages are loaded, attached, detached, and unloaded.
See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are provided for each.
These hook functions are called .onLoad and .onAttach. They both take arguments*? 1ibname
and pkgname; they should be defined in the namespace but not exported.

Packages can use a .onDetach (as from R 3.0.0) or .Last.lib function (provided the lat-
ter is exported from the namespace) when detach is called on the package. It is called with
a single argument, the full path to the installed package. There is also a hook .onUnload
which is called when the namespace is unloaded (via a call to unloadNamespace, perhaps called
by detach(unload = TRUE)) with argument the full path to the installed package’s directory.
.onUnload and .onDetach should be defined in the namespace and not exported, but .Last.1lib
does need to be exported.

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code to
set options and load shared objects should be placed in a .onLoad function, or use made of the
useDynLib directive described next.

User-level hooks are also available: see the help on function setHook.

These hooks are often used incorrectly. People forget to export .Last.lib. Compiled
code should be loaded in .onLoad (or via a useDynLb directive: see below) and unloaded in
.onUnload. Do remember that a package’s namespace can be loaded without the namespace
being attached (e.g. by pkgname::fun) and that a package can be detached and re-attached
whilst its namespace remains loaded.

1.5.4 useDynLib

A NAMESPACE file can contain one or more useDynLib directives which allows shared objects that
need to be loaded.*® The directive

useDynLib(foo)

registers the shared object foo?* for loading with library.dynam. Loading of registered ob-
ject(s) occurs after the package code has been loaded and before running the load hook func-
tion. Packages that would only need a load hook function to load a shared object can use the
useDynLib directive instead.

The useDynLib directive also accepts the names of the native routines that are to be used in
R via the .C, .Call, .Fortran and .External interface functions. These are given as additional
arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved when
the package is loaded and R variables identifying these symbols are added to the package’s
namespace with these names. These can be used in the .C, .Call, .Fortran and .External
calls in place of the name of the routine and the PACKAGE argument. For instance, we can call
the routine myRoutine from R with the code

.Call(myRoutine, x, y)
rather than
.Call("myRoutine", x, y, PACKAGE = "foo")

42 they will be called with two unnamed arguments, in that order.
43 NB: this will only be read in all versions of R if the package contains R code in a R directory.

44 Note that this is the basename of the shared object, and the appropriate extension (.so or .d1l) will be
added.

Chapter 1: Creating R packages 39

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time the routine is invoked. Secondly, this removes any
ambiguity in resolving symbols that might be present in several compiled DLLs.

In some circumstances, there will already be an R variable in the package with the same name
as a native symbol. For example, we may have an R function in the package named myRoutine.
In this case, it is necessary to map the native symbol to a different R variable name. This can
be done in the useDynLib directive by using named arguments. For instance, to map the native
symbol name myRoutine to the R variable myRoutine_sym, we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)
We could then call that routine from R using the command
.Call(myRoutine_sym, x, y)
Symbols without explicit names are assigned to the R variable with that name.

In some cases, it may be preferable not to create R variables in the package’s namespace
that identify the native routines. It may be too costly to compute these for many routines
when the package is loaded if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL, but do this each time the
routine is called. Given a reference to the DLL as an R variable, say d11, we can call the routine
myRoutine using the expression

.Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol when the
package is loaded. The only difference is that this is done each time in the case of d11$myRoutine.

In order to use this dynamic approach (e.g., d11$myRoutine), one needs the reference to the
DLL as an R variable in the package. The DLL can be assigned to a variable by using the
variable = d11Name format used above for mapping symbols to R variables. For example, if
we wanted to assign the DLL reference for the DLL foo in the example above to the variable
myDLL, we would use the following directive in the NAMESPACE file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and available for calls such as
myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 95), then we can use that directly rather than specifying the list of symbols again in
the useDynLib directive in the NAMESPACE file. Each routine in the registration information
is specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using the
.registration argument of useDynLib, we can instruct the namespace mechanism to create R
variables for these symbols. For example, suppose we have the following registration information
for a DLL named myDLL:

R_CMethodDef cMethods[] = {
{"foo", (DL_FUNC) &foo, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},
{"bar_sym", (DL_FUNC) &bar, O},
{NULL, NULL, O}

};

R_CallMethodDef callMethods[] = {
{"R_call_sym", (DL_FUNC) &R_call, 4},
{"R_version_sym", (DL_FUNC) &R_version, O},
{NULL, NULL, O}

}s;

Chapter 1: Creating R packages 40

Then, the directive in the NAMESPACE file
useDynLib(myDLL, .registration = TRUE)
causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and R_
version_sym to be defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in the registration informa-
tion and do not need to be the same as the name of the native routine. This allows the creator
of the registration information to map the native symbols to non-conflicting variable names in
R, e.g. R_version to R_version_sym for use in an R function such as

R_version <- function()
{
.Call(R_version_sym)

¥

Using argument .fixes allows an automatic prefix to be added to the registered symbols,
which can be useful when working with an existing package. For example, package KernSmooth
has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the FORTRAN symbols F_bkde and so on, and
so avoid clashes with R code in the namespace.

1.5.5 An example

As an example consider two packages named foo and bar. The R code for package foo in file
foo.Ris

x <-1

f <- function(y) c(x,y)

foo <- function(x) .Call("foo", x, PACKAGE="foo")
print.foo <- function(x, ...) cat("<a foo>\n")

Some C code defines a C function compiled into DLL foo (with an appropriate extension). The
NAMESPACE file for this package is

useDynLib(foo)
export (f, foo)
S3method (print, foo)

The second package bar has code file bar.R

¢ <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9

and NAMESPACE file

import (foo)
export(g, h)

Calling library(bar) loads bar and attaches its exports to the search path. Package foo is also
loaded but not attached to the search path. A call to g produces

http://CRAN.R-project.org/package=KernSmooth

Chapter 1: Creating R packages 41

> g(6)
(1] 1 13

This is consistent with the definitions of ¢ in the two settings: in bar the function c is defined
to be equivalent to sum, but in foo the variable c refers to the standard function c in base.

1.5.6 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes and
methods (unless these are purely used internally). The package should have Depends: methods
in its DESCRIPTION file?® and import (methods) or importFrom(methods, ...) plus any classes
and methods which are to be exported need to be declared in the NAMESPACE file. For example,
the stats4 package has

export(mle) # exporting methods implicitly exports the generic
importFrom("graphics", plot)
importFrom("stats", optim, qchisq)
For these, we define methods or (AIC, BIC, nobs) an implicit generic:
importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,
update, vcov)
exportClasses(mle, profile.mle, summary.mle)
All methods for imported generics:
exportMethods(coef, confint, logLik, plot, profile, summary,
show, update, vcov)
implicit generics which do not have any methods here
export (AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an exportClasses direc-
tive. Alternatively, they can be specified using exportClassPattern® in the same style as
for exportPattern. To export methods for generics from other packages an exportMethods
directive can be used.

Note that exporting methods on a generic in the namespace will also export the generic, and
exporting a generic in the namespace will also export its methods. If the generic function is not
local to this package, either because it was imported as a generic function or because the non-
generic version has been made generic solely to add S4 methods to it (as for functions such as
plot in the example above), it can be declared via either or both of export or exportMethods,
but the latter is clearer (and is used in the stats4 example above). In particular, for primitive
functions there is no generic function, so export would export the primitive, which makes no
sense. On the other hand, if the generic is local to this package, it is more natural to export the
function itself using export (), and this must be done if an implicit generic is created without
setting any methods for it (as is the case for AIC in stats4).

A non-local generic function is only exported to ensure that calls to the function will dispatch
the methods from this package (and that is not done or required when the methods are for
primitive functions). For this reason, you do not need to document such implicitly created
generic functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package, but does not
import the entire namespace of the other package?”, it needs to import the classes and methods
explicitly, with directives

importClassesFrom(package, ...)
45 This was necessary at least prior to R 3.0.2 as the methods package looked for its own R code on the search
path.
46 This defaults to the same pattern as exportPattern: use something like exportClassPattern("~$") to
override this.
47

if it does, there will be opaque warnings about replacing imports if the classes/methods are also imported.

Chapter 1: Creating R packages 42

importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small packages
A and B with B using A. Then they could have NAMESPACE files

export (f1, ngl)
exportMethods (" [")
exportClasses(cl)

and

a N
importFrom(A, ngl)

importClassesFrom(A, c1)

importMethodsFrom(A, f1)

export (f4, £5)

exportMethods (£f6, "[")

exportClasses(cl, c2)
-)

respectively.

Note that importMethodsFrom will also import any generics defined in the namespace on
those methods.

It is important if you export S4 methods that the corresponding generics are available. You
may for example need to import plot from graphics to make visible a function to be converted
into its implicit generic. But it is better practice to make use of the generics exported by stats4
as this enables multiple packages to unambiguously set methods on those generics.

1.6 Writing portable packages

This section contains advice on writing packages to be used on multiple platforms or for distri-
bution (for example to be submitted to a package repository such as CRAN).

Portable packages should have simple file names: use only alphanumeric ASCII characters
and ., and avoid those names not allowed under Windows which are mentioned above.

Many of the graphics devices are platform-specific: even X11() (aka x11()) which although
emulated on Windows may not be available on a Unix-alike (and is not the preferred screen
device on OS X). It is rarely necessary for package code or examples to open a new device, but
if essential,*® use dev.new().

Use R CMD build to make the release .tar.gz file.

R CMD check provides a basic set of checks, but often further problems emerge when people
try to install and use packages submitted to CRAN — many of these involve compiled code. Here
are some further checks that you can do to make your package more portable.

e If your package has a configure script, provide a configure.win script to be used on
Windows (an empty file if no actions are needed).

e If your package has a Makevars or Makefile file, make sure that you use only portable
make features. Such files should be LF-terminated (including the final line of the file) and
not make use of GNU extensions. Commonly misused GNU extensions are conditional
inclusions (ifeq and the like), ${shell ...} and ${wildcard ...}, and the use of += and
:=. Also, the use of $< other than in implicit rules is a GNU extension, as is the $~ macro

48 People use dev.new() to open a device at a particular size: that is not portable but using dev.new(noRStudioGD
= TRUE) helps.

Chapter 1: Creating R packages 43

Unfortunately makefiles which use GNU extensions often run on other platforms but do not
have the intended results.

The use of ${shell ...} can be avoided by using backticks, e.g.
PKG_CPPFLAGS = ‘gsl-config --cflags®

which works in all versions of make known®® to be used with R.

If you really must assume GNU make, declare it in the DESCRIPTION file by
SystemRequirements: GNU make

Since the only viable make for Windows is GNU make, it is permissible to use GNU exten-
sions in files Makevars.win or Makefile.win.

Moreover, Bash extensions also need to be avoided in shell scripts, including expres-
sions in Makefiles (which are passed to the shell for processing). Some R platforms use
strictly POSIX-conformant Bourne shells, and Windows and some Unix-alike OSes use ash
(http://en.wikipedia.org/wiki/Almquist_shell), a rather minimal shell with few
builtins. Beware of assuming that all the POSIX command-line utilities are available, espe-
cially on Windows where only a minimal set is provided for use with R. (See Section “The
command line tools” in R Installation and Administration.) One particular issue is the use
of echo, for which two behaviours are allowed (http://pubs.opengroup.org/onlinepubs/
9699919799/utilities/echo.html) and both occur as defaults on R platforms: portable
applications should not use -n (as the first argument) nor escape sequences.

e Make use of the abilities of your compilers to check the standards-conformance of your
code. For example, gcc can be used with options -Wall -pedantic to alert you to potential
problems. This is particularly important for C++, where g++ -Wall -pedantic will alert
you to the use of GNU extensions which fail to compile on most other C++ compilers. If
R was not configured accordingly, one can achieve this via personal Makevars files. See
Section “Customizing package compilation” in R Installation and Administration,

Although there is a 2011 version of the C++ standard, it is not yet fully implemented and
partial implementations are not universally available. Portable C++ code needs to follow
the 1998 standard (and not use features from C99). See also Section 1.2.4 [Using C++11
code], page 26 to specify a C++11 compiler.

If you use FORTRAN 77, ftnchek (http://www.dsm.fordham.edu/ ftnchek/) provides
thorough testing of conformance to the standard.

e Do be very careful with passing arguments between R, C and FORTRAN code. In particular,
long in C will be 32-bit on some R platforms (including 64-bit Windows), but 64-bit on
most modern Unix and Linux platforms. It is rather unlikely that the use of long in C code
has been thought through: if you need a longer type than int you should use a configure
test for a C99 type such as int_fast64_t (and failing that, long long®) and typedef your
own type to be long or long long, or use another suitable type (such as size_t).

It is not safe to assume that long and pointer types are the same size, and they are not on
64-bit Windows. If you need to convert pointers to and from integers use the C99 integer
types intptr_t and uintptr_t (which are defined in the header <stdint.h> and are not
required to be implemented by the C99 standard).

Note that integer in FORTRAN corresponds to int in C on all R platforms.

e Under no circumstances should your compiled code ever call abort or exit: these terminate
the user’s R process, quite possibly including all his unsaved work. One usage that could call
abort is the assert macro in C or C++ functions, which should never be active in production

49 GNU make, BSD make as in FreeBSD, AT&T make as implemented on Solaris.

50 but note that long long is not a standard C++ type, and C++ compilers set up for strict checking will reject
it.

http://en.wikipedia.org/wiki/Almquist_shell
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
http://www.dsm.fordham.edu/~ftnchek/

Chapter 1: Creating R packages 44

code. The normal way to ensure that is to define the macro NDEBUG, and R CMD INSTALL
does so as part of the compilation flags. If you wish to use assert during development. you
can include ~-UNDEBUG in PKG_CPPFLAGS. Note that your own src/Makefile or makefiles in
sub-directories may also need to define NDEBUG.

This applies not only to your own code but to any external software you compile in or link
to.

e Compiled code should not write to stdout or stderr and C++ and Fortran I/0O should not
be used. As with the previous item such calls may come from external software and may
never be called, but package authors are often mistaken about that.

e Errors in memory allocation and reading/writing outside arrays are very common causes
of crashes (e.g., segfaults) on some machines. See Section 4.3 [Checking memory access,
page 83 for tools which can be used to look for this.

e Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking at
the output of

nm -pg mypkg.so
and checking if any of the symbols marked U is unexpected is a good way to avoid this.

e Conflicts between symbols in DLLs are handled in very platform-specific ways. Good ways
to avoid trouble are to make as many symbols as possible static (check with nm -pg), and
to use names which are clearly tied to your package (which also helps users if anything does
go wrong). Note that symbol names starting with R_ are regarded as part of R’s namespace
and should not be used in packages.

e It is not portable to call compiled code in R or other packages via .Internal, .C, .Fortran,
.Call or .External, since such interfaces are subject to change without notice and will
probably result in your code terminating the R process.

e Do not use (hard or symbolic) file links in your package sources. Where possible R CMD
build will replace them by copies.

e If you do not yourself have a Windows system, consider submitting your source package to
WinBuilder (http://win-builder.r-project.org/) before distribution.

Do be careful in what your tests actually test. Bad practice seen in distributed packages
include:

e It is not reasonable to test the time taken by a command: you cannot know how fast or
how heavily loaded an R platform might be. At best you can test a ratio of times, and even
that is fraught with difficulties.

e Do not test the exact format of R error messages: they change, and they can be translated.

e Only test the accuracy of results if you have done a formal error analysis. Things such
as checking that probabilities numerically sum to one are silly: numerical tests should
always have a tolerance. That the tests on your platform achieve a particular tolerance says
little about other platforms. R is configured by default to make use of long doubles where
available, but they may not be available or be too slow for routine use. Most R platforms
use ‘ix86’ or ‘x86_64" CPUs: these use extended precision registers on some but not all of
their FPU instructions. Thus the achieved precision can depend on the compiler version
and optimization flags—our experience is that 32-bit builds tend to be less precise than
64-bit ones. But not all platforms use those CPUs, and not all®® which use them configure
them to allow the use of extended precision. In particular, ARM CPUs do not (currently)
have extended precision nor long doubles, and long double was 64-bit on HP /PA Linux.

5L Not doing so is the default on Windows, overridden for the R executables. It is also the default on some
Solaris compilers.

http://win-builder.r-project.org/

Chapter 1: Creating R packages 45

If you must try to establish a tolerance empirically, configure and build R with --disable-
long-double and use appropriate compiler flags (such as -ffloat-store and -fexcess-
precision=standard for gcc) to mitigate the effects of extended-precision calculations.

1.6.1 PDF size

There are a several tools available to reduce the size of PDF files: often the size can be reduced
substantially with no or minimal loss in quality. Not only do large files take up space: they can
stress the PDF viewer and take many minutes to print (if they can be printed at all).

qpdf (http://qpdf.sourceforge.net/) can compress losslessly. It is fairly readily available
(e.g. it has binaries for Windows and packages in Debian/Ubuntu/Fedora, and is installed as
part of the CRAN OS X distribution of R). R CMD build has an option to run qpdf over PDF
files under inst/doc and replace them if at least 10Kb and 10% is saved. The full path to the
gpdf command can be supplied as environment variable R_QPDF (and is on the CRAN binary of
R for OS X). It seems MiKTeX does not use PDF object compression and so qpdf can reduce
considerably the files it outputs: MiKTeX can be overridden by code in the preamble of an
Sweave or IMTEX file — see how this is done for the R reference manual at https://svn.
r-project.org/R/trunk/doc/manual/refman. top.

Other tools can reduce the size of PDFs containing bitmap images at excessively high reso-
lution. These are often best re-generated (for example Sweave defaults to 300 ppi, and 100-150
is more appropriate for a package manual). These tools include Adobe Acrobat (not Reader),
Apple’s Preview®? and Ghostscript (which converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None in.pdf out.pdf
and suitable options might be

-dPDFSETTINGS=/ebook
-dPDFSETTINGS=/screen

; see http://www.ghostscript.com/doc/current/Ps2pdf .htm for more such and consider all
the options for image downsampling). There have been examples in CRAN packages for which
Ghostscript 9.06 and later produced much better reductions than 9.05 or earlier.

We come across occasionally large PDF files containing excessively complicated figures using
PDF vector graphics: such figures are often best redesigned or failing that, output as PNG files.

Option --compact-vignettes to R CMD build defaults to value ‘qpdf’: use ‘both’ to
try harder to reduce the size, provided you have Ghostscript available (see the help for
tools: : compactPDF).

1.6.2 Check timing

There are several ways to find out where time is being spent in the check process. Start by setting
the environment variable _R_CHECK_TIMINGS_ to ‘0’. This will report the total CPU times (not
Windows) and elapsed times for installation and running examples, tests and vignettes, under
each sub-architecture if appropriate. For tests and vignettes, it reports the time for each as well
as the total.

Setting _R_CHECK_TIMINGS_ to a positive value sets a threshold (in seconds elapsed time) for
reporting timings.

If you need to look in more detail at the timings for examples, use option --timings to R
CMD check (this is implied by --as-cran as from R 3.0.2). This adds a summary to the check
output for all the examples with CPU or elapsed time of more than 5 seconds. It produces a file
mypkg.Rcheck/mypkg-Ex.timings containing timings for each help file: it is a tab-delimited
file which can be read into R for further analysis.

52 Select ‘Save as’, and select ‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed in other ways,
for example by Automator.

http://qpdf.sourceforge.net/
https://svn.r-project.org/R/trunk/doc/manual/refman.top
https://svn.r-project.org/R/trunk/doc/manual/refman.top
http://www.ghostscript.com/doc/current/Ps2pdf.htm

Chapter 1: Creating R packages 46

Timings for the tests and vignette runs are given at the bottom of the corresponding log
file: note that log files for successful vignette runs are only retained if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_QUTPUT_ is set to a true value.

1.6.3 Encoding issues

Care is needed if your package contains non-ASCII text, and in particular if it is intended to be
used in more than one locale. It is possible to mark the encoding used in the DESCRIPTION file
and in .Rd files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text. Many users of R will only be
able to view correctly text in their native language group (e.g. Western European, Eastern
European, Simplified Chinese) and ASCIL.’. Other characters may not be rendered at all,
rendered incorrectly, or cause your R code to give an error. For .Rd documentation, marking
the encoding and including ASCII transliterations is likely to do a reasonable job. The set of
characters which is commonly supported is wider than it used to be around 2000, but non-Latin
alphabets (Greek, Russian, Georgian, . ..) are still often problematic and those with double-
width characters (Chinese, Japanese, Korean) often need specialist fonts to render correctly.

Several CRAN packages have messages in their R code in French (and a few in German). A
better way to tackle this is to use the internationalization facilities discussed elsewhere in this
manual.

Function showNonASCIIfile in package tools can help in finding non-ASCII bytes in files.

There is a portable way to have arbitrary text in character strings (only) in your R code,
which is to supply them in Unicode as \uxxxx escapes. If there are any characters not in the
current encoding the parser will encode the character string as UTF-8 and mark it as such.
This applies also to character strings in datasets: they can be prepared using \uxxxx escapes or
encoded in UTF-8 in a UTF-8 locale, or even converted to UTF-8 via ‘iconv()’. If you do this,
make sure you have ‘R (>= 2.10)’ (or later) in the ‘Depends’ field of the DESCRIPTION file.

R sessions running in non-UTF-8 locales will if possible re-encode such strings for display
(and this is done by RGui on Windows, for example). Suitable fonts will need to be selected
or made available®® both for the console/terminal and graphics devices such as ‘X11()’ and
‘windows ()’. Using ‘postscript’ or ‘pdf’ will choose a default 8-bit encoding depending on the
language of the UTF-8 locale, and your users would need to be told how to select the ‘encoding’
argument.

If you want to run R CMD check on a Unix-alike over a package that sets a package encoding
in its DESCRIPTION file you may need to specify a suitable locale via environment variable R_
ENCODING_LOCALES. The default is equivalent to the value

"latinl=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.is08859150euro"

(which is appropriate for a system based on glibc) except that if the current locale is UTF-8
then the package code is translated to UTF-8 for syntax checking.

1.6.4 Portable C and C++ code

Writing portable C and C++ code is mainly a matter of observing the standards (C99, C++98 or
where declared C++11) and testing that extensions (such as POSIX functions) are supported.
However, some common errors are worth pointing out here. It can be helpful to look up functions
at http://www.cplusplus . com/reference/ or http://en.cppreference.com/w/ and
compare what is defined in the various standards.

53 except perhaps some special characters such as backslash and hash which may be taken over for currency

symbols.
5 Typically on a Unix-alike this is done by telling fontconf ig where to find suitable fonts to select glyphs from.

http://www.cplusplus.com/reference/
http://en.cppreference.com/w/

Chapter 1: Creating R packages 47

e Mathematical functions such as sqrt are defined in C++ for floating-point arguments. It
is legitimate in C++ to overload these with versions for types float, double, long double
and possibly more. This means that calling sqrt on an integer type may have ‘overloading
ambiguity’ as it could be promoted to any of the supported floating-point types: this is
commonly seen on Solaris. (C++11 requires additional overloads for integer types.)

e Function fabs is defined for only for floating-point types, except in C++11 which has over-
loads in <cmath> for integer types. Function abs is defined in C99’s <stdlib.h> for int
and in C++98’s <cstdlib> for integer types, overloaded in <cmath> for floating-point types.
C++11 has additional overloads for abs in <cmath> for integer types.

e Functions/macros such as isnan, isinf and isfinite are not required by C++98: where
compilers support them they may be only in the std namespace or only in the main name-
space. There is no way to make use of these functions which works with all C++ compilers
currently in use on R platforms: use R’s versions such as ISNAN and R_FINITE instead.

It is an error (and make little sense, although has been seen) to call these functions for
integer arguments.

e Variable-length arrays are C99, not supported by C++98 nor by the C++ compilers in use
with R on some platforms.

e Macros defined by the compiler/OS can cause problems. Macros starting with an underscore
followed by an upper-case letter or another underscore are reserved and should not be used
in portable code. Other macros, typically upper-case, may be defined by the compiler or
system headers and can cause problems. The most common issue involves the names of the
Intel CPU registers such as CS, DS and SS defined on i586/x64 Solaris in <sys/regset.h>
and often included indirectly by <stdlib.h> and other core headers.

Some additional information for C++ is available at http://journal .r-project . org/
archive/2011-2/RJournal_2011-2_Plummer.pdf by Martyn Plummer.

1.6.5 Binary distribution

If you want to distribute a binary version of a package on Windows or OS X, there are further
checks you need to do to check it is portable: it is all too easy to depend on external software
on your own machine that other users will not have.

For Windows, check what other DLLs your package’s DLL depends on (‘imports’ from in the
DLL tools’” parlance). A convenient GUI-based tool to do so is ‘Dependency Walker’ (http://
www . dependencywalker . com/) for both 32-bit and 64-bit DLLs — note that this will report
as missing links to R’s own DLLs such as R.d11 and Rblas.d11l. For 32-bit DLLs only, the
command-line tool pedump.exe -i (in Rtools*.exe) can be used, and for the brave, the objdump
tool in the appropriate toolchain will also reveal what DLLs are imported from. If you use a
toolchain other than one provided by the R developers or use your own makefiles, watch out in
particular for dependencies on the toolchain’s runtime DLLs such as libgfortran, libstdc++
and libgcc_s.

For OS X, using R CMD otool -L on the package’s shared objects in the libs directory
will show what they depend on: watch for any dependencies in /usr/local/lib, notably
libgfortran.2.dylib.

Many people (including the CRAN package repository) will not accept source packages con-
taining binary files as the latter are a security risk. If you want to distribute a source package
which needs external software on Windows or OS X, options include

e To arrange for installation of the package to download the additional software from a URL,
as e.g. package Cairo does.

e (For CRAN.) To negotiate with Uwe Ligges to host the additional components on Win-
Builder, and write a configure.win file to install them. There used to be many examples,

http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
http://www.dependencywalker.com/
http://www.dependencywalker.com/
http://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 48

e.g. package rgdal (however nowadays CRAN prefers to use a uniform cross-compilation
approach for software such as GDAL).

Be aware that license requirements will need to be met so you may need to supply the sources
for the additional components (and will if your package has a GPL-like license).

1.7 Diagnostic messages

Diagnostic messages can be made available for translation, so it is important to write them in
a consistent style. Using the tools described in the next section to extract all the messages can
give a useful overview of your consistency (or lack of it). Some guidelines follow.

e Messages are sentence fragments, and not viewed in isolation. So it is conventional not to
capitalize the first word and not to end with a period (or other punctuation).

e Try not to split up messages into small pieces. In C error messages use a single format
string containing all English words in the messages.

In R error messages do not construct a message with paste (such messages will not be
translated) but via multiple arguments to stop or warning, or via gettextf.

e Do not use colloquialisms such as “can’t” and “don’t”.

e Conventionally single quotation marks are used for quotations such as

’ord’ must be a positive integer, at most the number of knots
and double quotation marks when referring to an R character string or a class, such as
’format’ must be "normal" or "short" - using "normal"
Since ASCII does not contain directional quotation marks, it is best to use ‘’’ and let the
translator (including automatic translation) use directional quotations where available. The
range of quotation styles is immense: unfortunately we cannot reproduce them in a portable
texinfo document. But as a taster, some languages use ‘up’ and ‘down’ (comma) quotes
rather than left or right quotes, and some use guillemets (and some use what Adobe calls
‘guillemotleft’ to start and others use it to end).
In R messages it is also possible to use sQuote or dQuote as in
stop(gettextf("object must be of class %s or %s",
dQuote("manova"), dQuote("maov")),
domain = NA)

e Occasionally messages need to be singular or plural (and in other languages there may be
no such concept or several plural forms — Slovenian has four). So avoid constructions such
as was once used in library

if ((length(nopkgs) > 0) && !'missing(lib.loc)) {
if (length(nopkgs) > 1)
warning("libraries ",

paste(sQuote(nopkgs), collapse =", "),
" contain no packages")
else

warning("library ", paste(sQuote(nopkgs)),
" contains no package")

¥

and was replaced by
if ((length(nopkgs) > 0) && !missing(lib.loc)) {
pkglist <- paste(sQuote(nopkgs), collapse = ", ")
msg <- sprintf(ngettext(length(nopkgs),
"library %s contains no packages",
"libraries %s contain no packages",

http://CRAN.R-project.org/package=rgdal

Chapter 1: Creating R packages 49

domain = "R-base"),
pkglist)
warning(msg, domain=NA)

¥

Note that it is much better to have complete clauses as here, since in another language one
might need to say ‘There is no package in library %s’ or ‘There are no packages in libraries

%s’.

1.8 Internationalization

There are mechanisms to translate the R- and C-level error and warning messages. There are
only available if R is compiled with NLS support (which is requested by configure option
--enable-nls, the default).

The procedures make use of msgfmt and xgettext which are part of GNU gettext and this
will need to be installed: Windows users can find pre-compiled binaries at http://www.stats.
ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip.

1.8.1 C-level messages
The process of enabling translations is

e In a header file that will be included in all the C (or C++ or Objective C/C++) files containing
messages that should be translated, declare

#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS

#include <libintl.h>

#define _(String) dgettext ("pkg", String)
/* replace pkg as appropriate */

#else

#define _(String) (String)

#endif

e For each message that should be translated, wrap it in _(...), for example
error(_("’ord’ must be a positive integer"));
If you want to use different messages for singular and plural forms, you need to add

#ifndef ENABLE_NLS
#define dngettext(pkg, String, StringP, N) (N > 1 ? StringP : String)
#endif

and mark strings by
dngettext (("pkg", <singular string>, <plural string>, n)
e In the package’s src directory run

xgettext —--keyword=_ -o pkg.pot *.c

The file src/pkg.pot is the template file, and conventionally this is shipped as po/pkg.pot.

1.8.2 R messages

Mechanisms are also available to support the automatic translation of R stop, warning and
message messages. They make use of message catalogs in the same way as C-level messages,
but using domain R-pkg rather than pkg. Translation of character strings inside stop, warning
and message calls is automatically enabled, as well as other messages enclosed in calls to gettext
or gettextf. (To suppress this, use argument domain=NA.)

http://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
http://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip

Chapter 1: Creating R packages 50

Tools to prepare the R-pkg.pot file are provided in package tools: xgettext2pot will prepare
a file from all strings occurring inside gettext/gettextf, stop, warning and message calls.
Some of these are likely to be spurious and so the file is likely to need manual editing. xgettext
extracts the actual calls and so is more useful when tidying up error messages.

The R function ngettext provides an interface to the C function of the same name: see exam-
ple in the previous section. It is safest to use domain="R-pkg" explicitly in calls to ngettext,
and necessary for earlier versions of R unless they are calls directly from a function in the
package.

1.8.3 Preparing translations

Once the template files have been created, translations can be made. Conventional translations
have file extension .po and are placed in the po subdirectory of the package with a name that
is either ‘11.po’ or ‘R-11.po’ for translations of the C and R messages respectively to language
with code ‘11’

See Section “Localization of messages” in R Installation and Administration, for details of
language codes.

There is an R function, update_pkg_po in package tools, to automate much of the mainte-
nance of message translations. See its help for what it does in detail.

If this is called on a package with no existing translations, it creates the directory pkgdir/po,
creates a template file of R messages, pkgdir/po/R-pkg.pot, within it, creates the ‘en@quot’
translation and installs that. (The ‘en@quot’ pseudo-language interprets quotes in their direc-
tional forms in suitable (e.g. UTF-8) locales.)

If the package has C source files in its src directory that are marked for translation, use

touch pkgdir/po/pkg.pot
to create a dummy template file, then call update_pkg_po again (this can also be done before
it is called for the first time).

When translations to new languages are added in the pkgdir/po directory, running the same
command will check and then install the translations.

If the package sources are updated, the same command will update the template files, merge
the changes into the translation .po files and then installed the updated translations. You
will often see that merging marks translations as ‘fuzzy’ and this is reported in the coverage
statistics. As fuzzy translations are not used, this is an indication that the translation files need
human attention.

The merged translations are run through tools: :checkPofile to check that C-style formats
are used correctly: if not the mismatches are reported and the broken translations are not
installed.

This function needs the GNU gettext-tools installed and on the path: see its help page.

1.9 CITATION files

An installed file named CITATION will be used by the citation() function. (To be installed, it
needed to be in the inst subdirectory of the package sources.)

The CITATION file is parsed as R code (in the package’s declared encoding, or in ASCII if none
is declared). If no such file is present, citation auto-generates citation information from the
package DESCRIPTION metadata, and an example of what that would look like as a CITATION file
can be seen in recommended package nlme (see below): recommended packages boot, cluster
and mgcv have further examples.

A CITATION file will contain calls to function bibentry.

Here is that for nlme:

http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=boot
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=nlme

Chapter 1: Creating R packages 51

year <- sub("-.*", "" meta$Date)
note <- sprintf ("R package version %s", meta$Version)

bibentry(bibtype = "Manual",
title = "{nlme}: Linear and Nonlinear Mixed Effects Models",
author = c(person("Jose", "Pinheiro"),
person("Douglas", "Bates"),
person("Saikat", "DebRoy"),
person("Deepayan", "Sarkar"),
person("R Core Team")),
year = year,
note = note,
url = "http://CRAN.R-project.org/package=nlme")

Note the way that information that may need to be updated is picked up from the
DESCRIPTION file — it is tempting to hardcode such information, but it normally then gets
outdated. See ?bibentry for further details of the information which can be provided.

In case a bibentry contains IXTEX markup (e.g., for accented characters or mathematical
symbols), it may be necessary to provide a text representation to be used for printing via the
textVersion argument to bibentry. E.g., earlier versions of nlme additionally used

textVersion =
paste0("Jose Pinheiro, Douglas Bates, Saikat DebRoy,",
"Deepayan Sarkar and the R Core Team (",
year,
"). nlme: Linear and Nonlinear Mixed Effects Models. ",
note, ".")

The CITATION file should itself produce no output when source-d.

1.10 Package types

The DESCRIPTION file has an optional field Type which if missing is assumed to be ‘Package’,
the sort of extension discussed so far in this chapter. Currently one other type is recognized;
there used also to be a ‘Translation’ type.

1.10.1 Frontend

This is a rather general mechanism, designed for adding new front-ends such as the former
gnomeGUI package (see the Archive area on CRAN). If a configure file is found in the top-
level directory of the package it is executed, and then if a Makefile is found (often generated by
configure), make is called. If R CMD INSTALL --clean is used make clean is called. No other
action is taken.

R CMD build can package up this type of extension, but R CMD check will check the type and
skip it.

Many packages of this type need write permission for the R installation directory.

1.11 Services
Several members of the R project have set up services to assist those writing R packages,
particularly those intended for public distribution.

win-builder.r-project.org offers the automated preparation of (32/64-bit) Windows binaries
from well-tested source packages.

R-Forge (R-Forge.r-project.org) and RForge (www.rforge.net) are similar services with sim-
ilar names. Both provide source-code management through SVN, daily building and checking,

http://CRAN.R-project.org/package=nlme
http://win-builder.r-project.org
http://R-Forge.r-project.org
http://www.rforge.net

Chapter 1: Creating R packages 52

mailing lists and a repository that can be accessed via install.packages (they can be selected
by setRepositories and the GUI menus that use it). Package developers have the opportunity
to present their work on the basis of project websites or news announcements. Mailing lists,
forums or wikis provide useRs with convenient instruments for discussions and for exchanging
information between developers and/or interested useRs.

Chapter 2: Writing R documentation files 53

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation” (Rd) format, a simple markup
language much of which closely resembles (La)TgX, which can be processed into a variety of
formats, including ITEX, HTML and plain text. The translation is carried out by functions in
the tools package called by the script Rdconv in R_HOME/bin and by the installation scripts for
packages.

The R distribution contains more than 1300 such files which can be found in the
src/library/pkg/man directories of the R source tree, where pkg stands for one of the
standard packages which are included in the R distribution.

As an example, let us look at a simplified version of src/library/base/man/load.Rd which
documents the R function load.
e R
% File src/library/base/man/load.Rd
\name{load}
\alias{load}
\title{Reload Saved Datasets}
\description{
Reload the datasets written to a file with the function
\code{save}.
}
\usage{
load(file, envir = parent.frame())
}
\arguments{
\item{file}{a connection or a character string giving the
name of the file to load.}
\item{envir}{the environment where the data should be
loaded.}

}
\seealso{
\code{\link{save}}.
}
\examplesq{
save all data
save(list = 1s(), file= "all.RData")

restore the saved values to the current environment
load("all.RData")

restore the saved values to the workspace
load("all.RData", .GlobalEnv)

}

\keyword{file}

-)

An Rd file consists of three parts. The header gives basic information about the name of
the file, the topics documented, a title, a short textual description and R usage information for
the objects documented. The body gives further information (for example, on the function’s
arguments and return value, as in the above example). Finally, there is an optional footer with
keyword information. The header is mandatory.

Information is given within a series of sections with standard names (and user-defined sections
are also allowed). Unless otherwise specified! these should occur only once in an Rd file (in any

1 e.g. \alias, \keyword and \note sections.

Chapter 2: Writing R documentation files 54

order), and the processing software will retain only the first occurrence of a standard section in
the file, with a warning.

See “Guidelines for Rd files” for guidelines for writing documentation in Rd format which
should be useful for package writers. The R generic function prompt is used to construct a bare-
bones Rd file ready for manual editing. Methods are defined for documenting functions (which
fill in the proper function and argument names) and data frames. There are also functions
promptData, promptPackage, promptClass, and promptMethods for other types of Rd file.

The general syntax of Rd files is summarized below. For a detailed technical discussion of
current Rd syntax, see “Parsing Rd files”.

Rd files consists of three types of text input. The most common is KTEX-like, with the
backslash used as a prefix on markup (e.g. \alias), and braces used to indicate arguments (e.g.
{load}). The least common type of text is verbatim text, where no markup is processed. The
third type is R-like, intended for R code, but allowing some embedded macros. Quoted strings
within R-like text are handled specially: regular character escapes such as \n may be entered
as-is. Only markup starting with \1 (e.g. \1link) or \v (e.g. \var) will be recognized within
quoted strings. The rarely used vertical tab \v must be entered as \\v.

Each macro defines the input type for its argument. For example, the file initially uses
ITEX-like syntax, and this is also used in the \description section, but the \usage section
uses R-like syntax, and the \alias macro uses verbatim syntax. Comments run from a percent
symbol % to the end of the line in all types of text (as on the first line of the load example).

Because backslashes, braces and percent symbols have special meaning, to enter them into
text sometimes requires escapes using a backslash. In general balanced braces do not need to be
escaped, but percent symbols always do. For the complete list of macros and rules for escapes,
see “Parsing Rd files”.

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in particular, functions) are given
in this subsection.

\name{name}

name typically? is the basename of the Rd file containing the documentation. It
is the “name” of the Rd object represented by the file and has to be unique in a
package. To avoid problems with indexing the package manual, it may not contain
‘17 ¢’ nor ‘@’, and to avoid possible problems with the HTML help system it should
not contain ‘/’ nor a space. (IXTEX special characters are allowed, but may not be
collated correctly in the index.) There can only be one \name entry in a file, and it
must not contain any markup. Entries in the package manual will be in alphabetic?
order of the \name entries.

\alias{topic}
The \alias sections specify all “topics” the file documents. This information is
collected into index data bases for lookup by the on-line (plain text and HTML)
help systems. The topic can contain spaces, but (for historical reasons) leading and
trailing spaces will be stripped. Percent and left brace need to be escaped by a
backslash.

There may be several \alias entries. Quite often it is convenient to document
several R objects in one file. For example, file Normal.Rd documents the density,

2 There can be exceptions: for example Rd files are not allowed to start with a dot, and have to be uniquely
named on a case-insensitive file system.

3 in the current locale, and with special treatment for IATEX special characters and with any ‘pkgname-package’
topic moved to the top of the list.

http://developer.r-project.org/Rds.html
http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 55

distribution function, quantile function and generation of random variates for the
normal distribution, and hence starts with

\name{Normal}
\alias{Normal}
\alias{dnorm}
\alias{pnorm}
\alias{qgnorm}
\alias{rnorm}

Also, it is often convenient to have several different ways to refer to an R object,
and an \alias does not need to be the name of an object.

Note that the \name is not necessarily a topic documented, and if so desired it needs
to have an explicit \alias entry (as in this example).

\title{Title}
Title information for the Rd file. This should be capitalized and not end in a period;
try to limit its length to at most 65 characters for widest compatibility.

Markup is supported in the text, but use of characters other than English text and
punctuation (e.g., ‘<’) may limit portability.

There must be one (and only one) \title section in a help file.

\description{...}
A short description of what the function(s) do(es) (one paragraph, a few lines only).
(If a description is too long and cannot easily be shortened, the file probably tries to
document too much at once.) This is mandatory except for package-overview files.

\usage{fun(argl, arg2, ...)}
One or more lines showing the synopsis of the function(s) and variables documented
in the file. These are set in typewriter font. This is an R-like command.

The usage information specified should match the function definition ezactly (such
that automatic checking for consistency between code and documentation is possi-

ble).

It is no longer advisable to use \synopsis for the actual synopsis and show modified
synopses in the \usage. Support for \synopsis will be removed in \R 3.1.0. To
indicate that a function can be used in several different ways, depending on the
named arguments specified, use section \details. E.g., abline.Rd contains

\details{

Typical usages are
\preformatted{abline(a, b, untf = FALSE, \dots)

Use \method{generic}{class} to indicate the name of an S3 method for the generic
function generic for objects inheriting from class "class". In the printed versions,
this will come out as generic (reflecting the understanding that methods should not
be invoked directly but via method dispatch), but codoc() and other QC tools
always have access to the full name.

For example, print.ts.Rd contains

\usage{
\method{print}{ts}(x, calendar, \dots)
}

which will print as

Chapter 2: Writing R documentation files 56

Usage:

S3 method for class ’ts’:
print(x, calendar, ...)

Usage for replacement functions should be given in the style of dim(x) <- value
rather than explicitly indicating the name of the replacement function ("dim<-" in
the above). Similarly, one can use \method{generic}{class}(arglist) <- value
to indicate the usage of an S3 replacement method for the generic replacement
function "generic<-" for objects inheriting from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3 methods for
members of the Ops group, and S3 methods for user-defined (binary) infix opera-
tors (‘%xxx%’) follows the above rules, using the appropriate function names. E.g.,
Extract.factor.Rd contains

\usage{

\method{[}{factor}(x, \dots, drop = FALSE)
\method{[[}{factor}(x, \dots)
\method{[}{factor}(x, \dots) <- value

}

which will print as

Usage:

S3 method for class ’factor’:

x[..., drop = FALSE]
S3 method for class ’factor’:
x[[...]1]

S3 replacement method for class ’factor’:
x[...] <- value

\S3method is accepted as an alternative to \method.

\arguments{...}

\details{..

\value{...

Description of the function’s arguments, using an entry of the form
\item{arg_i}{Description of arg_i.}

for each element of the argument list. (Note that there is no whitespace between
the three parts of the entry.) There may be optional text outside the \item entries,
for example to give general information about groups of parameters.

3
A detailed if possible precise description of the functionality provided, extending
the basic information in the \description slot.

}

Description of the function’s return value.

If a list with multiple values is returned, you can use entries of the form
\item{comp_i}{Description of comp_i.}

for each component of the list returned. Optional text may precede® this list (see
for example the help for rle). Note that \value is implicitly a \describe environ-
ment, so that environment should not be used for listing components, just individual
\item{}{} entries.

4 Text between or after list items is discouraged.

Chapter 2: Writing R documentation files 57

\references{...}

A section with references to the literature. Use \url{} or \href{}{} for web point-
ers.

\note{...}

\author{..

\seealso{..

Use this for a special note you want to have pointed out. Multiple \note sections
are allowed, but might be confusing to the end users.

For example, pie.Rd contains
\note{
Pie charts are a very bad way of displaying information.

The eye is good at judging linear measures and bad at
judging relative areas.

3

Information about the author(s) of the Rd file. Use \email{} without extra delim-
iters (such as ‘()’ or ‘< >’) to specify email addresses, or \url{} or \href{}{} for
web pointers.

s

Pointers to related R objects, using \code{\1link{...}} to refer to them (\code is
the correct markup for R object names, and \1link produces hyperlinks in output
formats which support this. See Section 2.3 [Marking text], page 60, and Section 2.5
[Cross-references|, page 63).

\examples{...}

Examples of how to use the function. Code in this section is set in typewriter font
without reformatting and is run by example () unless marked otherwise (see below).

Examples are not only useful for documentation purposes, but also provide test code
used for diagnostic checking of R code. By default, text inside \examples{} will
be displayed in the output of the help page and run by example() and by R CMD
check. You can use \dontrun{} for text that should only be shown, but not run,
and \dontshow{} for extra commands for testing that should not be shown to users,
but will be run by example(). (Previously this was called \testonly, and that is
still accepted.)

Text inside \dontrun{} is verbatim, but the other parts of the \examples section
are R-like text.

For example,

x <- runif (10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable! In addition, it
should not use any system-specific features or require special facilities (such as In-
ternet access or write permission to specific directories). Text included in \dontrun
is indicated by comments in the processed help files: it need not be valid R code
but the escapes must still be used for %, \ and unpaired braces as in other verbatim
text.

Example code must be capable of being run by example, which uses source. This
means that it should not access stdin, e.g. to scan() data from the example file.
Data needed for making the examples executable can be obtained by random number
generation (for example, x <= rnorm(100)), or by using standard data sets listed
by data() (see ?data for more info).

Chapter 2: Writing R documentation files 58

Finally, there is \donttest, used (at the beginning of a separate line) to mark code
that should be run by examples() but not by R CMD check. This should be needed
only occasionally but can be used for code which might fail in circumstances that
are hard to test for, for example in some locales. (Use e.g. capabilities() to test
for features needed in the examples wherever possible, and you can also use try()
or tryCatch().)

\keyword{key}

There can be zero or more \keyword sections per file. Each \keyword section
should specify a single keyword, preferably one of the standard keywords as listed
in file KEYWORDS in the R documentation directory (default R_HOME/doc). Use e.g.
RShowDoc ("KEYWORDS") to inspect the standard keywords from within R. There can
be more than one \keyword entry if the R object being documented falls into more
than one category, or none.

Do strongly consider using \concept (see Section 2.9 [Indices|, page 65) instead of
\keyword if you are about to use more than very few non standard keywords.

The special keyword ‘internal’ marks a page of internal objects that are not part
of the package’s API. If the help page for object foo has keyword ‘internal’; then
help(foo) gives this help page, but foo is excluded from several object indices,
including the alphabetical list of objects in the HTML help system.

help.search() can search by keyword, including user-defined values: however the
‘Search Engine & Keywords’ HTML page accessed via help.start () provides single-
click access only to a pre-defined list of keywords.

2.1.2 Documenting data sets

The structure of Rd files which document R data sets is slightly different. Sections such as
\arguments and \value are not needed but the format and source of the data should be ex-

plained.

As an example, let us look at src/library/datasets/man/rivers.Rd which documents the
standard R data set rivers.

()
\name{rivers}
\docType{data}
\alias{rivers}
\title{Lengths of Major North American Rivers}
\description{
This data set gives the lengths (in miles) of 141 \dQuote{major}
rivers in North America, as compiled by the US Geological
Survey.
}
\usage{rivers}
\format{A vector containing 141 observations.}
\source{World Almanac and Book of Facts, 1975, page 406.3}
\references{
McNeil, D. R. (1977) \emph{Interactive Data Analysis}.
New York: Wiley.
}
\keyword{datasets}
N J

This uses the following additional markup commands.

\docType{...}

Indicates the “type” of the documentation object. Always ‘data’ for data sets, and
‘package’ for pkg-package.Rd overview files. Documentation for S4 methods and
classes uses ‘methods’ (from promptMethods()) and ‘class’ (from promptClass()).

Chapter 2: Writing R documentation files 59

\format{...}
A description of the format of the data set (as a vector, matrix, data frame, time
series, ...). For matrices and data frames this should give a description of each
column, preferably as a list or table. See Section 2.4 [Lists and tables]|, page 62, for
more information.

\source{...}
Details of the original source (a reference or URL). In addition, section \references
could give secondary sources and usages.

Note also that when documenting data set bar,

e The \usage entry is always bar or (for packages which do not use lazy-loading of data)
data(bar). (In particular, only document a single data object per Rd file.)

e The \keyword entry should always be ‘datasets’.

If bar is a data frame, documenting it as a data set can be initiated via prompt(bar).
Otherwise, the promptData function may be used.

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely ‘class?topic’ and ‘methods?topic’,
to access documentation for S4 classes and methods, respectively. This mechanism depends on
conventions for the topic names used in \alias entries. The topic names for S4 classes and
methods respectively are of the form

class-class
generic,signature_list-method

where signature_list contains the names of the classes in the signature of the method (without
quotes) separated by ,” (without whitespace), with ‘ANY” used for arguments without an explicit
specification. E.g., ‘genericFunction-class’ is the topic name for documentation for the S4
class "genericFunction", and ‘coerce,ANY,NULL-method’ is the topic name for documentation
for the S4 method for coerce for signature c("ANY", "NULL").

Skeletons of documentation for S4 classes and methods can be generated by using the func-
tions promptClass() and promptMethods () from package methods. If it is necessary or desired
to provide an explicit function declaration (in a \usage section) for an S4 method (e.g., if it has
“surprising arguments” to be mentioned explicitly), one can use the special markup

\S4method{generic}{signature_list}(argument_list)
(e.g., ‘\S4method{coerce}{ANY,NULL}(from, to)’).

To make full use of the potential of the on-line documentation system, all user-visible S4
classes and methods in a package should at least have a suitable \alias entry in one of the
package’s Rd files. If a package has methods for a function defined originally somewhere else,
and does not change the underlying default method for the function, the package is responsible
for documenting the methods it creates, but not for the function itself or the default method.

An S4 replacement method is documented in the same way as an S3 one: see the description
of \method in Section 2.1.1 [Documenting functions|, page 54.

See help("Documentation", package = "methods") for more information on using and cre-
ating on-line documentation for S4 classes and methods.

2.1.4 Documenting packages

Packages may have an overview help page with an \alias pkgname-package, e.g.
‘utils-package’ for the utils package, when package?pkgname will open that help page. If a
topic named pkgname does not exist in another Rd file, it is helpful to use this as an additional
\alias.

Chapter 2: Writing R documentation files 60

Skeletons of documentation for a package can be generated using the function
promptPackage (). If the final = TRUE argument is used, then the R4 file will be generated
in final form, containing the information that would be produced up to library(help =
pkgname). Otherwise (the default) comments will be inserted giving suggestions for content.

Apart from the mandatory \name and \title and the pkgname-package alias, the only
requirement for the package overview page is that it include a \docType{package} statement.
All other content is optional. We suggest that it should be a short overview, to give a reader
unfamiliar with the package enough information to get started. More extensive documentation is
better placed into a package vignette (see Section 1.4 [Writing package vignettes|, page 33) and
referenced from this page, or into individual man pages for the functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just insert an empty line (as in
(La)TgX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you can
“define” arbitrary ones by \section{section_title}{...}. For example

\section{Warning}{
You must not call this function unless ...

}

For consistency with the pre-assigned sections, the section name (the first argument to \section)
should be capitalized (but not all upper case). Whitespace between the first and second braced
expressions is not allowed. Markup (e.g. \code) within the section title may cause problems
with the latex conversion (depending on the version of macro packages such as ‘hyperref’) and
so should be avoided.

The \subsection macro takes arguments in the same format as \section, but is used within
a section, so it may be used to nest subsections within sections or other subsections. There is
no predefined limit on the nesting level, but formatting is not designed for more than 3 levels
(i.e. subsections within subsections within sections).

Note that additional named sections are always inserted at a fixed position in the output
(before \note, \seealso and the examples), no matter where they appear in the input (but in
the same order amongst themselves as in the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or quoting text.

\emph{text}

\strong{text}
Emphasize text using italic and bold font if possible; \strong is regarded as stronger
(more emphatic).

\bold{text}
Set text in bold font if possible.

\sQuote{text}

\dQuote{text}
Portably single or double quote text (without hard-wiring the characters used for
quotation marks).

Each of the above commands takes IXTEX-like input, so other macros may be used within
text.

Chapter 2: Writing R documentation files 61

The following logical markup commands are available for indicating specific kinds of text.
Except as noted, these take verbatim text input, and so other macros may not be used within
them. Some characters will need to be escaped (see Section 2.8 [Insertions]|, page 64).

\code{text}
Indicate text that is a literal example of a piece of an R program, e.g., a fragment of
R code or the name of an R object. Text is entered in R-like syntax, and displayed
using typewriter font if possible. Macros \var and \1link are interpreted within
text.

\preformatted{text}
Indicate text that is a literal example of a piece of a program. Text is displayed
using typewriter font if possible. Formatting, e.g. line breaks, is preserved. (Note
that this includes a line break after the initial {, so typically text should start on
the same line as the command.)

Due to limitations in IATEX as of this writing, this macro may not be nested within
other markup macros other than \dQuote and \sQuote, as errors or bad formatting
may result.

\kbd{keyboard-characters}
Indicate keyboard input, using slanted typewriter font if possible, so users can
distinguish the characters they are supposed to type from computer output. Text
is entered verbatim.

\samp{text}
Indicate text that is a literal example of a sequence of characters, entered verbatim.
No wrapping or reformatting will occur. Displayed using typewriter font if possible.

\verb{text}
Indicate text that is a literal example of a sequence of characters, with no interpre-
tation of e.g. \var, but which will be included within word-wrapped text. Displayed
using typewriter font if possible.

\pkg{package_name}
Indicate the name of an R package. KIEX-like.

\file{file_name}
Indicate the name of a file. Text is INTEX-like, so backslash needs to be escaped.
Displayed using a distinct font if possible.

\email{email_address}
Indicate an electronic mail address. IATEX-like, will be rendered as a hyperlink in
HTML and PDF conversion. Displayed using typewriter font if possible.

\url{uniform_resource_locator}
Indicate a uniform resource locator (URL) for the World Wide Web. The argument
is handled verbatim, and rendered as a hyperlink in HTML and PDF conversion.
Displayed using typewriter font if possible.

\href{uniform_resource_locator}{text}
Indicate a hyperlink to the World Wide Web. The first argument is handled verba-
tim, and is used as the URL in the hyperlink, with the second argument of INTEX-like
text displayed to the user.

\var{metasyntactic_variable}
Indicate a metasyntactic variable. In some cases this will be rendered distinctly, e.g.
in italic, but not in all®>. ITEX-like.

5 Currently it is rendered differently only in HTML conversions, and IATEX conversion outside ‘\usage’ and
‘\examples’ environments.

Chapter 2: Writing R documentation files 62

\env{environment_variable}
Indicate an environment variable. Verbatim. Displayed using typewriter font if
possible

\option{option}
Indicate a command-line option. Verbatim. Displayed using typewriter font if
possible.

\command{ command_name}
Indicate the name of a command. IXTEX-like, so \var is interpreted. Displayed
using typewriter font if possible.

\dfn{term}
Indicate the introductory or defining use of a term. KTEX-like.

\cite{reference}
Indicate a reference without a direct cross-reference wvia \link (see Section 2.5
[Cross-references|, page 63), such as the name of a book. IXTEX-like.

\acronym{acronym}
Indicate an acronym (an abbreviation written in all capital letters), such as GNU.

IXTEX-like.
2.4 Lists and tables

The \itemize and \enumerate commands take a single argument, within which there may be
one or more \item commands. The text following each \item is formatted as one or more para-
graphs, suitably indented and with the first paragraph marked with a bullet point (\itemize)
or a number (\enumerate).

Note that unlike argument lists, \item in these formats is followed by a space and the text
(not enclosed in braces). For example

\enumerateq
\item A database consists of one or more records, each with one or
more named fields.
\item Regular lines start with a non-whitespace character.
\item Records are separated by one or more empty lines.

}
\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows initial labels to be specified.
Each \item takes two arguments, the label and the body of the item, in exactly the same way
as an argument or value \item. \describe commands are mapped to <DL> lists in HTML and
\description lists in KTEX.

The \tabular command takes two arguments. The first gives for each of the columns the
required alignment (‘1’ for left-justification, ‘r’ for right-justification or ‘c’ for centring.) The
second argument consists of an arbitrary number of lines separated by \cr, and with fields
separated by \tab. For example:

\tabular{rl11}{
[,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr
[,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr
[,3] \tab Wind \tab numeric \tab Wind (mph)\cr
[,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr
[,5] \tab Month \tab numeric \tab Month (1--12)\cr
[,6] \tab Day \tab numeric \tab Day of month (1--31)

Chapter 2: Writing R documentation files 63

There must be the same number of fields on each line as there are alignments in the first
argument, and they must be non-empty (but can contain only spaces). (There is no whitespace
between \tabular and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \1link{foo} (usually in the combination \code{\1ink{foo}}) produces a hyperlink
to the help for foo. Here foo is a topic, that is the argument of \alias markup in another Rd
file (possibly in another package). Hyperlinks are supported in some of the formats to which Rd
files are converted, for example HTML and PDF, but ignored in others, e.g. the text format.

One main usage of \link is in the \seealso section of the help page, see Section 2.1 [Rd
format], page 53.

Note that whereas leading and trailing spaces are stripped when extracting a topic from a
\alias, they are not stripped when looking up the topic of a \link.

You can specify a link to a different topic than its name by \1ink [=dest]{name} which links
to topic dest with name name. This can be used to refer to the documentation for S3/4 classes,
for example \code{"\1link[=abc-class]{abc}"} would be a way to refer to the documentation
of an S4 class "abc" defined in your package, and \code{"\link[=terms.object]{terms}"}
to the S3 "terms" class (in package stats). To make these easy to read in the source file,
\code{"\1linkS4class{abc}"} expands to the form given above.

There are two other forms of optional argument specified as \link[pkg]{foo} and
\link[pkg:bar]{foo} to link to the package pkg, to files foo.html and bar.html respectively.
These are rarely needed, perhaps to refer to not-yet-installed packages (but there the HTML
help system will resolve the link at run time) or in the normally undesirable event that more
than one package offers help on a topic® (in which case the present package has precedence so
this is only needed to refer to other packages). They are currently only used in HTML help
(and ignored for hyperlinks in WTEX conversions of help pages), and link to the file rather
than the topic (since there is no way to know which topics are in which files in an uninstalled
package). The only reason to use these forms for base and recommended packages is to force a
reference to a package that might be further down the search path. Because they have been
frequently misused, the HTML help system looks for topic foo in package pkg if it does not
find file foo.html.

2.6 Mathematics

Mathematical formulae should be set beautifully for printed documentation yet we still
want something useful for text and HTML online help. To this end, the two commands
\eqn{latex}{ascii} and \deqn{latex}{ascii} are used. Whereas \eqn is used for “inline”
formulae (corresponding to TEX’s $...$), \deqn gives “displayed equations” (as in IXTEX’s
displaymath environment, or TEX’s $$...$$). Both arguments are treated as verbatim text.

Both commands can also be used as \eqn{latexascii} (only one argument) which then
is used for both latex and ascii. No whitespace is allowed between command and the first
argument, nor between the first and second arguments.

The following example is from Poisson.Rd:

\degn{p(x) = \frac{\lambda"x e~{-\lambdal}}{x!}}{%
p(x) = \lambda"x exp(-\lambda)/x!'}
for \equ{x = 0, 1, 2, \ldots}.

For the IATEX manual, this becomes

6 a common example in CRAN packages is \1ink [mgcv]{gam}.

Chapter 2: Writing R documentation files 64

e—)\

p(z) = A" o

forx=0,1,2,....

For text on-line help we get

p(x) = lambda"x exp(-lambda)/x!

for x =0, 1, 2,

Greek letters (both cases) will be rendered in HTML if preceded by a backslash, \dots and
\1ldots will be rendered as ellipses and \sqrt, \ge and \le as mathematical symbols.

Note that only basic IXTEX can be used, there being no provision to specify INTEX style files
such as the AMS extensions.

2.7 Figures

To include figures in help pages, use the \figure markup. There are three forms.

The two commonly used simple forms are \figure{filename} and
\figure{filename}{alternate text}. This will include a copy of the figure in ei-
ther HTML or ITEX output. In text output, the alternate text will be displayed instead.
(When the second argument is omitted, the filename will be used.) Both the filename and
the alternate text will be parsed verbatim, and should not include special characters that are
significant in HTML or IATEX.

The expert form is \figure{filename}{options: string}. (The word ‘options:’ must be
typed exactly as shown and followed by at least one space.) In this form, the string is copied
into the HTML img tag as attributes following the src attribute, or into the second argument
of the \Figure macro in KTEX, which by default is used as options to an \includegraphics
call. As it is unlikely that any single string would suffice for both display modes, the expert
form would normally be wrapped in conditionals. It is up to the author to make sure that legal
HTML/IATEX is used. For example, to include a logo in both HTML (using the simple form) and
ITEX (using the expert form), the following could be used:

\if{html}{\figure{logo. jpg}t{Our logo}}
\if{latex}{\figure{logo. jpgt{options: width=0.5in}}

The files containing the figures should be stored in the directory man/figures. Files
with extensions .jpg, .jpeg, -pdf, .png and .svg from that directory will be copied to the
help/figures directory at install time. (Figures in PDF format will not display in most HTML
browsers, but might be the best choice in reference manuals.) Specify the filename relative to
man/figures in the \figure directive.

2.8 Insertions

¢ b

Use \R for the R system itself. Use \dots for the dots in function argument lists .7, and
\1ldots for ellipsis dots in ordinary text.” These can be followed by {}, and should be unless
followed by whitespace.

After an unescaped ‘%’, you can put your own comments regarding the help text. The rest
of the line (but not the newline at the end) will be completely disregarded. Therefore, you can
also use it to make part of the “help” invisible.

" There is only a fine distinction between \dots and \ldots. It is technically incorrect to use \1ldots in code
blocks and tools::checkRd will warn about this—on the other hand the current converters treat them the
same way in code blocks, and elsewhere apart from the small distinction between the two in IATEX.

Chapter 2: Writing R documentation files 65

You can produce a backslash (‘\’) by escaping it by another backslash. (Note that \cr is
used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces® almost always need to be escaped by ‘\’,
and ‘\\’ can be used for backslash and needs to be when there two or more adjacent backslashes).
In R-like code quoted strings are handled slightly differently; see “Parsing Rd files” for details
— in particular braces should not be escaped in quoted strings.

All of ‘% { } \’ should be escaped in IANTEX-like text.

Text which might need to be represented differently in different encodings should be marked
by \enc, e.g. \enc{Jsreskog}{Joreskog} (with no whitespace between the braces) where the
first argument will be used where encodings are allowed and the second should be ASCII (and
is used for e.g. the text conversion in locales that cannot represent the encoded form). (This is
intended to be used for individual words, not whole sentences or paragraphs.)

2.9 Indices

The \alias command (see Section 2.1.1 [Documenting functions], page 54) is used to specify
the “topics” documented, which should include all R objects in a package such as functions and
variables, data sets, and S4 classes and methods (see Section 2.1.3 [Documenting S4 classes and
methods], page 59). The on-line help system searches the index data base consisting of all alias
topics.

In addition, it is possible to provide “concept index entries” using \concept, which can be
used for help.search() lookups. E.g., file cor.test.Rd in the standard package stats contains

\concept{Kendall correlation coefficient}
\concept{Pearson correlation coefficient}
\concept{Spearman correlation coefficient}

so that e.g. ??Spearman will succeed in finding the help page for the test for association between
paired samples using Spearman’s p.

(Note that help.search() only uses “sections” of documentation objects with no additional
markup.)

If you want to cross reference such items from other help files via \1ink, you need to use
\alias and not \concept.
2.10 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two OS-specific options
are available, ‘unix’ and ‘windows’, and lines in the help source file can be enclosed in

#ifdef 0OS
#endif

or
#ifndef 0S
#tendif

for OS-specific inclusion or exclusion. Such blocks should not be nested, and should be entirely
within a block (that, is between the opening and closing brace of a section or item), or at
top-level contain one or more complete sections.

If the differences between platforms are extensive or the R objects documented are only
relevant to one platform, platform-specific Rd files can be put in a unix or windows subdirectory.

8 See the examples section in the file Paren.Rd for an example.

http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 66

2.11 Conditional text

Occasionally the best content for one output format is different from the best content for another.
For this situation, the \if{format}{text} or \ifelse{format}{text}{alternate} markup is
used. Here format is a comma separated list of formats in which the text should be rendered.
The alternate will be rendered if the format does not match. Both text and alternate may be
any sequence of text and markup.

Currently the following formats are recognized: example, html, latex and text. These select
output for the corresponding targets. (Note that example refers to extracted example code
rather than the displayed example in some other format.) Also accepted are TRUE (matching
all formats) and FALSE (matching no formats). These could be the output of the \Sexpr macro
(see Section 2.12 [Dynamic pages|, page 66).

The \out{literal} macro would wusually be wused within the text part of
\if{format}{text}. It causes the renderer to output the literal text exactly, with
no attempt to escape special characters. For example, use the following to output the markup
necessary to display the Greek letter in KTEX or HTML, and the text string alpha in other
formats:

\if{latex}{\out{\alpha}}\ifelse{html}{\out{α}}{alpha}

2.12 Dynamic pages
Two macros supporting dynamically generated man pages are \Sexpr and \RdOpts. These are
modelled after Sweave, and are intended to contain executable R expressions in the R4 file.

The main argument to \Sexpr must be valid R code that can be executed. It may also take
options in square brackets before the main argument. Depending on the options, the code may
be executed at package build time, package install time, or man page rendering time.

The options follow the same format as in Sweave, but different options are supported. Cur-
rently the allowed options and their defaults are:

e cval=TRUE Whether the R code should be evaluated.

e echo=FALSE Whether the R code should be echoed. If TRUE, a display will be given in a
preformatted block. For example, \Sexpr [echo=TRUE]{ x <- 1 } will be displayed as

>x <=1
e keep.source=TRUE Whether to keep the author’s formatting when displaying the code, or
throw it away and use a deparsed version.
e results=text How should the results be displayed? The possibilities are:

— results=text Apply as.character() to the result of the code, and insert it as a text
element.

— results=verbatim Print the results of the code just as if it was executed at the console,
and include the printed results verbatim. (Invisible results will not print.)

— results=rd The result is assumed to be a character vector containing markup to be
passed to parse_Rd (), with the result inserted in place. This could be used to insert
computed aliases, for instance. parse_Rd() is called first with fragment = FALSE to
allow a single Rd section macro to be inserted. If that fails, it is called again with
fragment = TRUE, the older behavior.

— results=hide Insert no output.

e strip.white=TRUE Remove leading and trailing white space from each line of output if
strip.white=TRUE. With strip.white=all, also remove blank lines.

e stage=install Control when this macro is run. Possible values are

— stage=build The macro is run when building a source tarball.

Chapter 2: Writing R documentation files 67

— stage=install The macro is run when installing from source.

— stage=render The macro is run when displaying the help page.

Conditionals such as #ifdef (see Section 2.10 [Platform-specific sections|, page 65) are
applied after the build macros but before the install macros. In some situations (e.g.
installing directly from a source directory without a tarball, or building a binary package)
the above description is not literally accurate, but authors can rely on the sequence being
build, #ifdef, install, render, with all stages executed.

Code is only run once in each stage, so a \Sexpr [results=rd] macro can output an \Sexpr
macro designed for a later stage, but not for the current one or any earlier stage.

e width, height, fig These options are currently allowed but ignored.

The \RdOpts macro is used to set new defaults for options to apply to following uses of
\Sexpr.

For more details, see the online document “Parsing Rd files”.

2.13 User-defined macros

The \newcommand and \renewcommand macros allow new macros to be defined within an Rd
file. These are similar but not identical to the same-named IATEX macros.

They each take two arguments which are parsed verbatim. The first is the name of the
new macro including the initial backslash, and the second is the macro definition. As in
IXTEX, \newcommand requires that the new macro not have been previously defined, whereas
\renewcommand allows existing macros (including all built-in ones) to be replaced.

Also as in ITEX, the new macro may be defined to take arguments, and numeric placeholders
such as #1 are used in the macro definition. However, unlike INTEX, the number of arguments
is determined automatically from the highest placeholder number seen in the macro definition.
For example, a macro definition containing #1 and #3 (but no other placeholders) will define
a three argument macro (whose second argument will be ignored). As in KTEX, at most 9
arguments may be defined. If the # character is followed by a non-digit it will have no special
significance. All arguments to user-defined macros will be parsed as verbatim text, and simple
text-substitution will be used to replace the place-holders, after which the replacement text will
be parsed.

For example, the NEWS.Rd file currently uses the definition
\newcommand{\PR}{\Sexpr [results=rd]{tools:: :Rd_expr_PR(#1)}}

which defines \PR to be a single argument macro; then code like
\PR{1234}

will expand to
\Sexpr [results=rd]{tools:::Rd_expr_PR(1234)}

when parsed.

2.14 Encoding

Rd files are text files and so it is impossible to deduce the encoding they are written in unless
ASCITI: files with 8-bit characters could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-JP, etc. So an
\encoding{} section must be used to specify the encoding if it is not ASCII. (The \encoding{}
section must be on a line by itself, and in particular one containing no non-ASCII characters.
The encoding declared in the DESCRIPTION file will be used if none is declared in the file.) The Rd
files are converted to UTF-8 before parsing and so the preferred encoding for the files themselves
is now UTF-8.

http://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 68

Wherever possible, avoid non-ASCII chars in Rd files, and even symbols such as ‘<’, >, ‘§’,
o7y) @, 77 and ‘x7 outside verbatim environments (since they may disappear in fonts
designed to render text). (Function showNonASCIIfile in package tools can help in finding
non-ASCII bytes in the files.)

For convenience, encoding names ‘latinl’ and ‘latin2’ are always recognized: these and
‘UTF-8’ are likely to work fairly widely. However, this does not mean that all characters in
UTF-8 will be recognized, and the coverage of non-Latin characters® is fairly low. Using ITEX
inputenx (see 7Rd2pdf in R) will give greater coverage of UTF-8.

The \enc command (see Section 2.8 [Insertions], page 64) can be used to provide transliter-
ations which will be used in conversions that do not support the declared encoding.

The IXTEX conversion converts the file to UTF-8 from the declared encoding, and includes a
\inputencoding{utf8}

command, and this needs to be matched by a suitable invocation of the \usepackage{inputenc}
command. The R utility R CMD Rd2pdf looks at the converted code and includes the encodings
used: it might for example use

\usepackage [utf8]{inputenc}

(Use of utf8 as an encoding requires MTEX dated 2003/12/01 or later. Also, the use of Cyrillic
characters in ‘UTF-8’ appears to also need ‘\usepackage[T2A]{fontenc}’, and R CMD Rd2pdf
includes this conditionally on the file t2aenc.def being present and environment variable _R_
CYRILLIC_TEX_ being set.)

Note that this mechanism works best with Latin letters: the coverage of UTF-8 in TEX is
quite low.

2.15 Processing documentation files
There are several commands to process Rd files from the system command line.

Using R CMD Rdconv one can convert R documentation format to other formats, or extract
the executable examples for run-time testing. The currently supported conversions are to plain
text, HTML and I¥TEX as well as extraction of the examples.

R CMD Rd2pdf generates PDF output from documentation in Rd files, which can be specified
either explicitly or by the path to a directory with the sources of a package. In the latter case, a
reference manual for all documented objects in the package is created, including the information
in the DESCRIPTION files.

R CMD Sweave and R CMD Stangle process vignette-like documentation files (e.g. Sweave vi-
gnettes with extension ‘.Snw’ or ‘.Rnw’, or other non-Sweave vignettes). R CMD Stangle is used
to extract the R code fragments.

The exact usage and a detailed list of available options for all of these commands can be ob-
tained by running R CMD command --help, e.g., R CMD Rdconv --help. All available commands
can be listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You may need to have installed the the tools to build
packages from source as described in the “R Installation and Administration” manual, although
typically all that is needed is a KTEX installation.

9 R 2.9.0 added support for UTF-8 Cyrillic characters in IATEX, but on some OSes this will need Cyrillic
support added to IATEX, so environment variable _R_CYRILLIC_TEX_ may need to be set to a non-empty value
to enable this.

Chapter 2: Writing R documentation files 69

2.16 Editing Rd files

It can be very helpful to prepare .Rd files using a editor which knows about their syntax and
will highlight commands, indent to show the structure and detect mis-matched braces, and so
on.

The system most commonly used for this is some version of Emacs (including XEmacs) with
the ESS package (http://ess.r-project.org/: it is often is installed with Emacs but may
need to be loaded, or even installed, separately).

Another is the Eclipse IDE with the Stat-ET plugin (http: //www.walware .de/goto/
statet), and (on Windows only) Tinn-R (http://sourceforge.net/projects/tinn-r/).
People have also used KTEX mode in a editor, as .Rd files are rather similar to KTEX files.

Some R front-ends provide editing support for .Rd files, for example RStudio (http://
rstudio.org/).

http://ess.r-project.org/
http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://sourceforge.net/projects/tinn-r/
http://rstudio.org/
http://rstudio.org/

Chapter 3: Tidying and profiling R code 70

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making available for others to use
is worth documenting, tidying up and perhaps optimizing. The last two of these activities are
the subject of this chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users differently. By default
code entered by users has the source code stored internally, and when the function is listed, the
original source is reproduced. Loading code from a package (by default) discards the source
code, and the function listing is re-created from the parse tree of the function.

Normally keeping the source code is a good idea, and in particular it avoids comments being
removed from the source. However, we can make use of the ability to re-create a function
listing from its parse tree to produce a tidy version of the function, for example with consistent
indentation and spaces around operators. If the original source does not follow the standard
format this tidied version can be much easier to read.

We can subvert the keeping of source in two ways.
1. The option keep.source can be set to FALSE before the code is loaded into R.
2. The stored source code can be removed by calling the removeSource () function, for example
by

myfun <- removeSource (myfun)

In each case if we then list the function we will get the standard layout.

Suppose we have a file of functions myfuns.R that we want to tidy up. Create a file tidy.R
containing

source ("myfuns.R", keep.source = FALSE)
dump(1ls(all = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R --vanilla < tidy.R or by pasting into
an R session. Then the file new.myfuns.R will contain the functions in alphabetical order in the
standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying. Although the de-
parsing cannot do so, we recommend the consistent use of the preferred assignment operator ‘<-’
(rather than ‘=") for assignment. Many package authors use a version of Emacs (on a Unix-alike
or Windows) to edit R code, using the ESS[S] mode of the ESS Emacs package. See Section “R
coding standards” in R Internals for style options within the ESS[S] mode recommended for the
source code of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most! Unix-alike versions of R.

The command Rprof is used to control profiling, and its help page can be consulted for full
details. Profiling works by recording at fixed intervals? (by default every 20 msecs) which line
in which R function is being used, and recording the results in a file (default Rprof.out in the
working directory). Then the function summaryRprof or the command-line utility R CMD Rprof
Rprof.out can be used to summarize the activity.

As an example, consider the following code (from Venables & Ripley, 2002, pp. 225-6).

1 R has to be built to enable this, but the option --enable-R-profiling is the default.
2 For Unix-alikes these are intervals of CPU time, and for Windows of elapsed time.

Chapter 3: Tidying and profiling R code 71

library(MASS); library(boot)
storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,
start = c(b=30.401, c=2.2183))
st <- cbind(stormer, fit=fitted(storm.fm))
storm.bf <- function(rs, i) {
st$Time <- st$fit + rs[i]
tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st,
start = coef(storm.fm))
tmpmgetAllPars ()
}
rs <- scale(resid(storm.fm), scale
Rprof ("boot.out")
storm.boot <- boot(rs, storm.bf, R = 4999) # slow enough to profile
Rprof (NULL)

FALSE) # remove the mean

Having run this we can summarize the results by
R CMD Rprof boot.out

Each sample represents 0.02 seconds.
Total run time: 22.52 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alonme.

% total % self
total seconds self seconds name
100.0 25.22 0.2 0.04 "boot"
99.8 25.18 0.6 0.16 "statistic"
96.3 24.30 4.0 1.02 "nls"
33.9 8.56 2.2 0.56 "<Anonymous>"
32.4 8.18 1.4 0.36 "eval"
31.8 8.02 1.4 0.34 ".Call"
28.6 7.22 0.0 0.00 "eval.parent"
28.5 7.18 0.3 0.08 "model.frame"
28.1 7.10 3.5 0.88 "model.frame.default"
17.4 4.38 0.7 0.18 "sapply"
15.0 3.78 3.2 0.80 "nlsModel"
12.5 3.16 1.8 0.46 "lapply"
12.3 3.10 2.7 0.68 "assign"
% self % total
self seconds total seconds name
5.7 1.44 7.5 1.88 "inherits"
4.0 1.02 96.3 24.30 "nls"
3.6 0.92 3.6 0.92 ngn
3.5 0.88 28.1 7.10 "model.frame.default"
3.2 0.80 15.0 3.78 "nlsModel"
2.8 0.70 9.8 2.46 "qr.coef"
2.7 0.68 12.3 3.10 "assign"
2.5 0.64 2.5 0.64 " .Fortran"
2.5 0.62 7.1 1.80 "gr.default"
2.2 0.56 33.9 8.56 "<Anonymous>"
2.1 0.54 5.9 1.48 "unlist"
2.1 0.52 7.9 2.00 "FUN"

This often produces surprising results and can be used to identify bottlenecks or pieces of R
code that could benefit from being replaced by compiled code.

Two warnings: profiling does impose a small performance penalty, and the output files can
be very large if long runs are profiled at the default sampling interval.

Profiling short runs can sometimes give misleading results. R from time to time performs
garbage collection to reclaim unused memory, and this takes an appreciable amount of time
which profiling will charge to whichever function happens to provoke it. It may be useful to

Chapter 3: Tidying and profiling R code 72

compare profiling code immediately after a call to gc () with a profiling run without a preceding
call to gc.

More detailed analysis of the output can be achieved by the tools in the CRAN packages
proftools and profr: in particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes more memory than is
conveniently available or when memory allocation and copying of objects is responsible for slow
code. There are three ways to profile memory use over time in R code. All three require
R to have been compiled with --enable-memory-profiling, which is not the default, but is
currently used for the OS X and Windows binary distributions. All can be misleading, for
different reasons.

In understanding the memory profiles it is useful to know a little more about R’s memory
allocation. Looking at the results of gc () shows a division of memory into Vcells used to store
the contents of vectors and Ncells used to store everything else, including all the administrative
overhead for vectors such as type and length information. In fact the vector contents are divided
into two pools. Memory for small vectors (by default 128 bytes or less) is obtained in large chunks
and then parcelled out by R; memory for larger vectors is obtained directly from the operating
system.

Some memory allocation is obvious in interpreted code, for example,
y<-x+1

allocates memory for a new vector y. Other memory allocation is less obvious and occurs because
R is forced to make good on its promise of ‘call-by-value’ argument passing. When an argument
is passed to a function it is not immediately copied. Copying occurs (if necessary) only when
the argument is modified. This can lead to surprising memory use. For example, in the ‘survey’
package we have
print.svycoxph <- function (x, ...)
{
print(x$survey.design, varnames = FALSE, design.summaries = FALSE,
L)
x$call <- x$printcall
NextMethod ()
}

It may not be obvious that the assignment to x$call will cause the entire object x to be copied.

This copying to preserve the call-by-value illusion is usually done by the internal C function
duplicate.

The main reason that memory-use profiling is difficult is garbage collection. Memory is
allocated at well-defined times in an R program, but is freed whenever the garbage collector
happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can be given the option
memory.profiling=TRUE. It then writes out the total R memory allocation in small vectors,
large vectors, and cons cells or nodes at each sampling interval. It also writes out the number
of calls to the internal function duplicate, which is called to copy R objects. summaryRprof
provides summaries of this information. The main reason that this can be misleading is that
the memory use is attributed to the function running at the end of the sampling interval. A
second reason is that garbage collection can make the amount of memory in use decrease, so a
function appears to use little memory. Running under gctorture helps with both problems: it
slows down the code to effectively increase the sampling frequency and it makes each garbage

http://CRAN.R-project.org/package=proftools
http://CRAN.R-project.org/package=profr

Chapter 3: Tidying and profiling R code 73

collection release a smaller amount of memory. Changing the memory limits with mem.1limits ()
may also be useful, to see how the code would run under different memory conditions.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation profiler, Rprofmem(), which
writes out a stack trace to an output file every time a large vector is allocated (with a user-
specified threshold for ‘large’) or a new page of memory is allocated for the R heap. Summary
functions for this output are still being designed.

Running the example from the previous section with

> Rprofmem("boot.memprof",threshold=1000)

> storm.boot <- boot(rs, storm.bf, R = 4999)

> Rprofmem(NULL)
shows that apart from some initial and final work in boot there are no vector allocations over
1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a specific (presumably
large) R object. Calling tracemem on an object marks it so that a message is printed to standard
output when the object is copied via duplicate or coercion to another type, or when a new
object of the same size is created in arithmetic operations. The main reason that this can be
misleading is that copying of subsets or components of an object is not tracked. It may be
helpful to use tracemem on these components.

In the example above we can run tracemem on the data frame st

> tracemem(st)
[1] "<0x9abd5e0>"
> storm.boot <- boot(rs, storm.bf, R = 4)

memtrace [0x9abd5e0->0x92a6d08] :

statistic boot

memtrace [0x92a6d08->0x92a6d80] : $<-.data.frame $<- statistic boot
memtrace [0x92a6d80->0x92a6df8] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x9271318] : statistic boot

memtrace [0x9271318->0x9271390] : $<-.data.frame $<- statistic boot
memtrace [0x9271390->0x9271408] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x914f558] : statistic boot

memtrace [0x914£558->0x914f5f8] : $<-.data.frame $<- statistic boot
memtrace [0x914f5f8->0x914f670]: $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x972cbf0] : statistic boot

memtrace [0x972cbf0->0x972¢cc68] : $<-.data.frame $<- statistic boot
memtrace [0x972cc68->0x972cd08] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x98ead98] : statistic boot

memtrace [0x98ead98->0x98eael0]: $<-.data.frame $<- statistic boot
memtrace [0x98eael10->0x98eae88] : $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the R+1 calls to storm.bf. This
is surprising, since none of the duplications happen inside nls. Stepping through storm.bf in
the debugger shows that all three happen in the line
st$Time <- st$fit + rs([i]
Data frames are slower than matrices and this is an example of why. Using
tracemem(st$Viscosity) does not reveal any additional copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section contains some hints gleaned
from various R users. Some methods need to be different for a compiled executable and for
dynamic/shared libraries/objects as used by R packages. We know of no good way to profile
DLLs on Windows.

Chapter 3: Tidying and profiling R code 74

3.4.1 Linux

Options include using sprof for a shared object, and oprofile (see http://oprofile .
sourceforge .net/) and perf (see https://perf.wiki.kernel.org/index.php/Tutorial)
for any executable or shared object.

3.4.1.1 sprof

You can select shared objects to be profiled with sprof by setting the environment variable
LD_PROFILE. For example

% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so
R
. run the boot example
% sprof /path/to/R_HOME/library/stats/libs/stats.so \
/var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls us/call us/call name

76.19 0.32 0.32 0 0.00 numeric_deriv
16.67 0.39 0.07 0 0.00 nls_iter

7.14 0.42 0.03 0 0.00 getListElement

rm /var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile
. to clean up ...

It is possible that root access is needed to create the directories used for the profile data.

3.4.1.2 oprofile and operf

The oprofile project has two modes of operation. In what is now called ‘legacy’ mode, it
is uses a daemon to collect information on a process (see below). Since version 0.9.8 (August
2012), the preferred mode is to use operf, so we discuss that first. The modes differ in how the
profiling data is collected: it is analysed by tools such as opreport and oppannote in both.

Here is an example on x86_64 Linux using R 3.0.2. File pvec.R contains the part of the
examples from pvec in package parallel:

library(parallel)
N <- 1e6
dates <- sprintf (’%044-%02d-%02d’, as.integer (2000+rnorm(N)),
as.integer (runif (N, 1, 12)), as.integer(runif(N, 1, 28)))
system.time(a <- as.P0SIXct(dates, format = "%Y-Ym-%d"))
with timings from the final step
user system elapsed
0.371 0.237 0.612
R-level profiling by Rprof shows

self.time self.pct total.time total.pct

"strptime" 1.70 41.06 1.70 41.06
"as.POSIXct.POSIX1t" 1.40 33.82 1.42 34.30
"sprintf" 0.74 17.87 0.98 23.67

so the conversion from character to POSIX1t takes most of the time.

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
https://perf.wiki.kernel.org/index.php/Tutorial

Chapter 3: Tidying and profiling R code 75

This can be run under operf and analysed by

operf R -f pvec.R

opreport

opreport -1 /path/to/R_HOME/bin/exec/R
opannotate --source /path/to/R_HOME/bin/exec/R
And for the system time

opreport -1 /1ib64/libc.so.6

The first report shows where (which library etc) the time was spent:

CPU_CLK_UNHALT. .. |
samples| bl
166761 99.9161 Rdev
CPU_CLK_UNHALT. .. |
samples | hl
70586 42.3276 no-vmlinux
56963 34.1585 1libc-2.16.s0
36922 22.1407 R
1584 0.9499 stats.so
624 0.3742 libm-2.16.so0

The rest of the output is voluminous, and only extracts are shown below.

Most of the time within R is spent in

samples % image name symbol name
10397 28.5123 R R_gc_internal
5683 15.5848 R do_sprintf

3036 8.3258 R do_asPOSIXct
2427 6.6557 R do_strptime
2421 6.6392 R Rf_mkCharLenCE
1480 4.0587 R w_strptime_internal
1202 3.2963 R Rf_gnormb

1165 3.1948 R unif_rand

675 1.8511 R mktimeO

617 1.6920 R makelt

617 1.6920 R validate_tm

584 1.6015 R day_of_the_week

opannotate shows that 31% of the time in R is spent in memory.c, 21% in datetime.c
and 7% in Rstrptime.h. The analysis for 1ibc showed that calls to wcsftime dominated, so
those calls were cached for R 3.0.3: the time spent in no-vmlinux (the kernel) was reduced
dramatically.

On platforms which support it, callgraphs can be produced by opcontrol --callgraph if
collected via operf --callgraph.

The profiling data is by default stored in sub-directory oprofile_data of the current direc-
tory, which can be removed at the end of the session.

Another example, from sm version 2.2-5.4. The example for sm.variogram took a long time:

system.time (example(sm.variogram))

user system elapsed

http://CRAN.R-project.org/package=sm

Chapter 3: Tidying and profiling R code 76

5.543 3.202 8.785
including a lot of system time. Profiling just the slow part, the second plot, showed

samples | bl
381845 99.9885 R
CPU_CLK_UNHALT. . . |
samples| bl
187484 49.0995 sm.so
169627 44.4230 no-vmlinux
12636 3.3092 libgfortran.so.3.0.0
6455 1.6905 R

so the system time was almost all in the Linux kernel. It is possible to dig deeper if you have a
matching uncompressed kernel with debug symbols to specify via ——vmlinux: we did not.

In ‘legacy’ mode oprofile works by running a daemon which collects information. The
daemon must be started as root, e.g.

% su

% opcontrol --no-vmlinux

% (optional, some platforms) opcontrol --callgraph=5
% opcontrol --start

% exit

Then as a user

% R
. run the boot example
% opcontrol --dump
% opreport -1 /path/to/R_HOME/library/stats/libs/stats.so

samples % symbol name

1623 75.5939 anonymous symbol from section .plt
349 16.2552 numeric_deriv

113 5.2632 nls_iter

62 2.8878 getlListElement

% opreport -1 /path/to/R_HOME/bin/exec/R

samples % symbol name

76052 11.9912 Rf_eval

54670 8.6198 Rf_findVarInFrame3
37814 5.9622 Rf_allocVector
31489 4.9649 Rf_duplicate
28221 4.4496 Rf_protect

26485 4.1759 Rf_cons

23650 3.7289 Rf_matchArgs
21088 3.3250 Rf_findFun

19995 3.1526 findVarLocInFrame
14871 2.3447 Rf_evallist

13794 2.1749 R_Newhashpjw
13522 2.1320 R_gc_internal

Shutting down the profiler and clearing the records needs to be done as root.

Chapter 3: Tidying and profiling R code 7

3.4.2 Solaris

On 64-bit (only) Solaris, the standard profiling tool gprof collects information from shared
objects compiled with -pg.

34.3 OS X

Developers have recommended sample (or Sampler.app, which is a GUI version), Shark (in
version of Xcode up to those for Snow Leopard), and Instruments (part of Xcode, see https://
developer . apple . com /library /mac / #documentation /DeveloperTools / Conceptual /
InstrumentsUserGuide/Introduction/Introduction.html).

https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html

Chapter 4: Debugging 78

4 Debugging

This chapter covers the debugging of R extensions, starting with the ways to get useful error
information and moving on to how to deal with errors that crash R. For those who prefer other
styles there are contributed packages such as debug on CRAN (described in an article in R-News
3/3). (There are notes from 2002 provided by Roger Peng at http://www.biostat . jhsph.
edu/~rpeng/docs/R-debug-tools.pdf which provide complementary examples to those given
here.)

4.1 Browsing

Most of the R-level debugging facilities are based around the built-in browser. This can be
used directly by inserting a call to browser () into the code of a function (for example, using
fix(my_function)). When code execution reaches that point in the function, control returns
to the R console with a special prompt. For example

> fix(summary.data.frame) ## insert browser() call after for() loop
> summary (women)

Called from: summary.data.frame(women)

Browse[1]> 1s()

[1] |Idigits|| llill lllbsﬂ "1W“ "maXSllm" ||nmll llnrll "IlV"
[9] "ObjeCt" llsmsll HZ"
Browse[1]> maxsum
(11 7
Browse[1]>
height weight
Min. :58.0 Min. :115.0
1st Qu.:61.5 1st Qu.:124.5
Median :65.0 Median :135.0
Mean :65.0 Mean :136.7
3rd Qu.:68.5 3rd Qu.:148.0
Max. :72.0 Max. :164.0

> rm(summary.data.frame)
At the browser prompt one can enter any R expression, so for example 1s() lists the objects in
the current frame, and entering the name of an object will' print it. The following commands
are also accepted
en
Enter ‘step-through’ mode. In this mode, hitting return executes the next line of code
(more precisely one line and any continuation lines). Typing ¢ will continue to the end of
the current context, e.g. to the end of the current loop or function.
e C
In normal mode, this quits the browser and continues execution, and just return works in
the same way. cont is a synonym.
e vwhere
This prints the call stack. For example
> summary (women)
Called from: summary.data.frame(women)

Browse[1]> where
where 1: summary.data.frame(women)

1 With the exceptions of the commands listed below: an object of such a name can be printed via an explicit
call to print.

http://CRAN.R-project.org/package=debug
http://CRAN.R-project.org/doc/Rnews/Rnews_2003-3.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2003-3.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Chapter 4: Debugging 79

where 2: summary(women)

Browse[1]>
o ()

Quit both the browser and the current expression, and return to the top-level prompt.

Errors in code executed at the browser prompt will normally return control to the browser
prompt. Objects can be altered by assignment, and will keep their changed values when the
browser is exited. If really necessary, objects can be assigned to the workspace from the browser
prompt (by using <<- if the name is not already in scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to find out is what R was doing
at the time of the error, and the most useful tool is traceback(). We suggest that this is run
whenever the cause of the error is not immediately obvious. Daily, errors are reported to the R
mailing lists as being in some package when traceback() would show that the error was being
reported by some other package or base R. Here is an example from the regression suite.

> success <- c¢(13,12,11,14,14,11,13,11,12)

failure <- ¢(0,0,0,0,0,0,0,2,2)

resp <- cbind(success, failure)

predictor <- c(0, 57(0:7))

glm(resp ~ O+predictor, family = binomial(link="log"))

Error: no valid set of coefficients has been found: please supply starting values

> traceback()

3: stop("no valid set of coefficients has been found: please supply

starting values", call. = FALSE)

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > 0)

1: glm(resp ~ O + predictor, family = binomial(link ="log"))

>
>
>
>

The calls to the active frames are given in reverse order (starting with the innermost). So we
see the error message comes from an explicit check in glm.fit. (traceback() shows you all the
lines of the function calls, which can be limited by setting option "deparse.max.lines".)

Sometimes the traceback will indicate that the error was detected inside compiled code, for

example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

step factor 0.000488281 reduced below ’minFactor’ of 0.000976563

> traceback()

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)
This will be the case if the innermost call is to .C, .Fortran, .Call, .External or .Internal,
but as it is also possible for such code to evaluate R expressions, this need not be the innermost
call, as in

> traceback()

9: gm(a, b, x)

8: .Call(R_numeric_deriv, expr, theta, rho, dir)

7: numericDeriv(form[[3]], names(ind), env)

6: getRHS(O)

5: assign("rhs", getRHS(), envir = thisEnv)

4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)
3: function (newPars)
{
setPars (newPars)
assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),
envir = thisEnv)

Chapter 4: Debugging 80

assign("dev", sum(resid”2), envir = thisEnv)
assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)
return(QR$rank < min(dim(QR$qr)))
}(c(-0.00760232418963883, 1.00119632515036))
2: .Call(R_nls_iter, m, ctrl, trace)
1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))
Occasionally traceback() does not help, and this can be the case if S4 method dispatch is
involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))

Error in as.environment(pkg) : no item called "package:S4nswv"

on the search list

Error in initialize(value, ...) : S language method selection got

an error when called from internal dispatch for function ’initialize’
> traceback()

2: initialize(value, ...)

1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment in initialize (and the note
“called from internal dispatch” tells us so). In this case we searched the R sources for the quoted
call, which occurred in only one place, methods: : : .asEnvironmentPackage. So now we knew
where the error was occurring. (This was an unusually opaque example.)

The error message
evaluation nested too deeply: infinite recursion / options(expressions=)?

can be hard to handle with the default value (5000). Unless you know that there actually is
deep recursion going on, it can help to set something like

options (expressions=500)
and re-run the example showing the error.

Sometimes there is warning that clearly is the precursor to some later error, but it is not
obvious where it is coming from. Setting options(warn = 2) (which turns warnings into errors)
can help here.

Once we have located the error, we have some choices. One way to proceed is to find out
more about what was happening at the time of the crash by looking a post-mortem dump. To
do so, set options(error=dump.frames) and run the code again. Then invoke debugger () and
explore the dump. Continuing our example:

> options(error = dump.frames)

> glm(resp ~ O + predictor, family = binomial(link ="log"))

Error: no valid set of coefficients has been found: please supply starting values
which is the same as before, but an object called last.dump has appeared in the workspace.
(Such objects can be large, so remove it when it is no longer needed.) We can examine this at
a later time by calling the function debugger.

> debugger ()

Message: Error: no valid set of coefficients has been found: please supply starting values
Available environments had calls:

1: glm(resp ~ O + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus

3: stop("no valid set of coefficients has been found: please supply starting values

Enter an environment number, or O to exit Selection:

which gives the same sequence of calls as traceback, but in outer-first order and with only the
first line of the call, truncated to the current width. However, we can now examine in more
detail what was happening at the time of the error. Selecting an environment opens the browser
in that frame. So we select the function call which spawned the error message, and explore some
of the variables (and execute two function calls).

Chapter 4: Debugging 81

Enter an environment number, or O to exit Selection: 2
Browsing in the environment with call:

glm.fit(x = X, y = Y, weights = weights, start = start, etas
Called from: debugger.look(ind)
Browse[1]> 1s()

[1] "aic" "boundary" "coefold" "control" "conv"
[6] "dev" "dev.resids" "devold" "EMPTY" "eta"
[11] "etastart" "family" "fit" "good" "intercept"
[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"
[21] "mustart" "n" "ngoodobs" "nobs" "nvars"
[26] "offset" "start" "valideta" "validmu" "variance"
[31] "varmu" Ilwll "weights" IIXII "Xnames"
[36] Ilyll n ynames n IIZ n
Browse[1]> eta
1 2 3 4 5
0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]> valideta(eta)

(1] TRUE

Browse[1]> mu

1 2 3 4 5 6 7 8
1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
9

0.8397616

Browse[1]> validmu(mu)

(1] FALSE

Browse[1]> ¢

Available environments had calls:

1: glm(resp ~ O + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart
3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or O to exit Selection: O
> rm(last.dump)

Because last.dump can be looked at later or even in another R session, post-mortem debug-
ging is possible even for batch usage of R. We do need to arrange for the dump to be saved: this
can be done either using the command-line flag --save to save the workspace at the end of the
run, or via a setting such as

> options(error = quote({dump.frames(to.file=TRUE); q()}))
See the help on dump.frames for further options and a worked example.

An alternative error action is to use the function recover():

> options(error = recover)
> glm(resp ~ O + predictor, family = binomial(link = "log"))
Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or O to exit

1: glm(resp ~ O + predictor, family = binomial(link = "log"))
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine the state of the program
directly, without dumping and re-loading the dump. As its help page says, recover can be
routinely used as the error action in place of dump.calls and dump.frames, since it behaves
like dump . frames in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong, but not necessarily
why. An alternative approach is to take a closer look at what was happening just before the

Chapter 4: Debugging 82

error, and a good way to do that is to use debug. This inserts a call to the browser at the
beginning of the function, starting in step-through mode. So in our example we could use
> debug(glm.fit)
> glm(resp ~ O + predictor, family = binomial(link ="log"))
debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > 0)
debug: {
lists the whole function
Browse[1]>
debug: x <- as.matrix(x)

Browse[1]> start

[1] -2.235357e-06

debug: eta <- drop(x %*% start)
Browse[1]> eta

1 2 3 4 5
0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01
Browse[1]>

debug: mu <- linkinv(eta <- eta + offset)

Browse[1]> mu

1 2 3 4 5 6 7 8
1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
9

0.8397616

(The prompt Browse [1]> indicates that this is the first level of browsing: it is possible to step
into another function that is itself being debugged or contains a call to browser().)

debug can be used for hidden functions and S3 methods by e.g.
debug(stats:::predict.Arima). (It cannot be used for S4 methods, but an alter-
native is given on the help page for debug.) Sometimes you want to debug a function defined
inside another function, e.g. the function arimafn defined inside arima. To do so, set debug on
the outer function (here arima) and step through it until the inner function has been defined.
Then call debug on the inner function (and use ¢ to get out of step-through mode in the outer
function).

To remove debugging of a function, call undebug with the argument previously given to
debug; debugging otherwise lasts for the rest of the R session (or until the function is edited or
otherwise replaced).

trace can be used to temporarily insert debugging code into a function, for example to insert
a call to browser () just before the point of the error. To return to our running example

first get a numbered listing of the expressions of the function

> page(as.list(body(glm.fit)), method="print")

> trace(glm.fit, browser, at=22)

Tracing function "glm.fit" in package "stats"

[1] "glm.fit"

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Tracing glm.fit(x = X, y = Y, weights = weights, start = start,

etastart = etastart, step 22

Called from: eval(expr, envir, enclos)

Browse[1]> n

and single-step from here.

> untrace(glm.fit)
For your own functions, it may be as easy to use £ix to insert temporary code, but trace can help
with functions in a namespace (as can fixInNamespace). Alternatively, use trace(,edit=TRUE)
to insert code visually.

Chapter 4: Debugging 83

4.3 Checking memory access

Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. Often the crash appears long after the invalid memory
access: in particular damage to the structures which R itself has allocated may only become
apparent at the next garbage collection (or even at later garbage collections after objects have
been deleted).

Note that memory access errors may be seen with LAPACK, BLAS and Java-using packages:
some at least of these seem to be intentional, and some are related to passing characters to
Fortran.

4.3.1 Using gctorture

We can help to detect memory problems in R objects earlier by running garbage collection as
often as possible. This is achieved by gctorture (TRUE), which as described on its help page

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret
out memory protection bugs. Also makes R run very slowly, unfortunately.

The reference to ‘memory protection’ is to missing C-level calls to PROTECT/UNPROTECT (see
Section 5.9.1 [Garbage Collection], page 105) which if missing allow R objects to be garbage-
collected when they are still in use. But it can also help with other memory-related errors.

Normally running under gctorture (TRUE) will just produce a crash earlier in the R program,
hopefully close to the actual cause. See the next section for how to decipher such crashes.

It is possible to run all the examples, tests and vignettes covered by R CMD check under
gctorture (TRUE) by using the option --use-gct.

The function gctorture2 provides more refined control over the GC torture process. Its
arguments step, wait and inhibit_release are documented on its help page. Environment
variables can also be used at the start of the R session to turn on GC torture: R_GCTORTURE cor-
responds to the step argument to gctorture2, R_GCTORTURE_WAIT to wait, and R_GCTORTURE_
INHIBIT_RELEASE to inhibit_release.

If R is configured with --enable-strict-barrier then a variety of tests for the integrity of
the write barrier are enabled. In addition tests to help detect protect issues are enabled:

e All GCs are full GCs.
e New nodes in small node pages are marked as NEWSXP on creation.

e After a GC all free nodes that are not of type NEWSXP are marked as type FREESXP and
their previous type is recorded.

e Most calls to accessor functions check their SEXP inputs and SEXP outputs and signal an
error if a FREESXP is found. The address of the node and the old type are included in the
error message.

R CMD check --use-gct can be set to use gctorture2(n) rather than gctorture (TRUE) by
setting environment variable _R_CHECK_GCT_N_ to a positive integer value to be used as n.

Used with a debugger and with gctorture or gctorture2 this mechanism can be helpful in
isolating memory protect problems.

4.3.2 Using valgrind

If you have access to Linux on a common CPU type or supported versions of OS X? you can
use valgrind (http://www.valgrind.org/, pronounced to rhyme with ‘tinned’) to check for
possible problems. To run some examples under valgrind use something like

2 at the time of writing mainly for 10.7 with some support for 10.8, none for the current 10.9.

http://www.valgrind.org/

Chapter 4: Debugging 84

R -d valgrind --vanilla < mypkg-Ex.R
R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where mypkg-Ex.R is a set of examples, e.g. the file created in mypkg.Rcheck by R CMD check.
Occasionally this reports memory reads of ‘uninitialised values’ that are the result of compiler
optimization, so can be worth checking under an unoptimized compile: for maximal information
use a build with debugging symbols. We know there will be some small memory leaks from
readline and R itself — these are memory areas that are in use right up to the end of the R
session. Expect this to run around 20x slower than without valgrind, and in some cases even
slower than that. Several versions of valgrind were not happy with some optimized BLASes
that use CPU-specific instructions so you may need to build a version of R specifically to use
with valgrind.

On platforms supported by valgrind you can build a version of R with extra instrumentation
to help valgrind detect errors in the use of memory allocated from the R heap. The configure
option is --with-valgrind-instrumentation=Ilevel, where level is 0, 1, or 2. Level 0 is the
default and does not add any anything. Level 1 will detect use of uninitialised memory and
has little impact on speed. Level 2 will detect many other memory-use bugs but makes R much
slower when running under valgrind. Using this in conjunction with gctorture can be even
more effective (and even slower).

An example of valgrind output is

==12539== Invalid read of size 4

==12539== at Ox1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by Ox1CEO7E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)

==125639== by Ox80CACE2: Rf_eval (eval.c:400)

==12539== by 0x80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12539== by O0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)
==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==125639== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by O0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12539== Address Ox1COD2EA8 is 280 bytes inside a block of size 1996 alloc’d
==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

This example is from an instrumented version of R, while tracking down a bug in the Matrix
package in 2006. The first line indicates that R has tried to read 4 bytes from a memory address
that it does not have access to. This is followed by a C stack trace showing where the error
occurred. Next is a description of the memory that was accessed. It is inside a block allocated by
malloc, called from GetNewPage, that is, in the internal R heap. Since this memory all belongs
to R, valgrind would not (and did not) detect the problem in an uninstrumented build of R. In
this example the stack trace was enough to isolate and fix the bug, which was in tsc_transpose,
and in this example running under gctorture() did not provide any additional information.
When the stack trace is not sufficiently informative the option --db-attach=yes to valgrind
may be helpful. This starts a post-mortem debugger (by default gdb) so that variables in the C
code can be inspected (see Section 4.4.2 [Inspecting R objects], page 89).

valgrind is good at spotting the use of uninitialized values: use option --track-
origins=yes to show where these originated from. What it cannot detect is the misuse of
arrays allocated on the stack: this includes C automatic variables and some?® Fortran arrays.

3 small fixed-size arrays by default in gfortran, for example.

http://CRAN.R-project.org/package=Matrix

Chapter 4: Debugging 85

It is possible to run all the examples, tests and vignettes covered by R CMD check under
valgrind by using the option --use-valgrind. If you do this you will need to select the
valgrind options some other way, for example by having a ~/.valgrindrc file containing

--leak-check=full
--track-origins=yes

or setting the environment variable VALGRIND_OPTS.

On OS X you may need to ensure that debugging symbols are made available (so valgrind re-
ports line numbers in files). This can usually be done with the valgrind option --dsymutil=yes
to ask for the symbols to be dumped when the .so file is loaded. This will not work where pack-
ages are installed into a system area (such as the R.framework) and can be slow. Installing
packages with R CMD INSTALL --dsym installs the dumped symbols. (This can also be done by
setting environment variable PKG_MAKE_DSYM to a non-empty value before the INSTALL.)

4.3.3 Using the Address Sanitizer

AddressSanitizer (‘ASan’) is a tool with similar aims to the memory checker in valgrind.
It is available with suitable builds® of gcc 4.8.0 or clang 3.1 and later on common
Linux and OS X platforms. See http://clang.llvm.org/docs/UsersManual . html #
controlling-code-generation, http://clang.1llvm.org/docs/AddressSanitizer . html
and https://code.google.com/p/address-sanitizer/.

It requires code to have been compiled and linked with -fsanitize=address®, and compiling
with ~-fno-omit-frame-pointer will give more legible reports. It has a runtime penalty of 2-3x,
extended compilation times and uses substantially more memory, often 1-2GB, at run time. On
64-bit platforms it reserves (but does not allocate) 16-20TB of virtual memory: restrictive shell
settings can cause problems.

By comparison with valgrind, ASan can detect misuse of stack and global variables but not
the use of uninitialized memory.

gcc as from version 4.9.0 returns symbolic addresses for the location of the error, but most
other versions do not. For the latter, one possibility is to use an external symbolizer. Depending
on the version, this can be done via an environment variable, e.g.

ASAN_SYMBOLIZER_PATH=/path/to/llvm-symbolizer

or by piping the output through asan_symbolize.py® and perhaps then (for compiled C++ code)
c++filt.

The simplest way to make use of this is to build a version of R with something like

CC="gcc-4.9 -std=gnu99 -fsanitize=address"
CFLAGS="-fno-omit-frame-pointer -g -02 -Wall -pedantic -mtune=native"

which will ensure that the libasan run-time library is compiled into the R executable. However
this check can be enabled on a per-package basis by using a ~/.R/Makevars file like

CC = gcc-4.9 -std=gnu99 -fsanitize=address -fno-omit-frame-pointer
CXX = g++-4.9 -fsanitize=address -fno-omit-frame-pointer

F77 = gfortran-4.9 -fsanitize=address

FC = gfortran-4.9 -fsanitize=address

4 ot including the versions distributed by Apple in Xcode 4.6 or 5, nor of clang in Fedora prior to an update in
Fedora 19. On some platforms, e.g. Fedora, the runtime library, libasan, needs to be installed separately. OS
X users can install a suitable clang from the sources or possibly distributions such as MacPorts or Homebrew.
-faddress-sanitizer in clang 3.1

installed on some Linux systems as asan_symbolize, and obtainable from https: / /1lvm . org /
svn / 1lvm-project / compiler-rt / trunk / 1ib / asan / scripts / asan_symbolize . py: it makes use of
llvm-symbolizer if available.

http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
http://clang.llvm.org/docs/AddressSanitizer.html
https://code.google.com/p/address-sanitizer/
https://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/asan/scripts/asan_symbolize.py
https://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/asan/scripts/asan_symbolize.py

Chapter 4: Debugging 86

(Note that -fsanitize=address has to be part of the compiler specification to ensure it is
used for linking. These settings will not be honoured by packages which ignore ~/.R/Makevars.)
It will be necessary to build R with

MAIN_LDFLAGS = -fsanitize=address

to link the runtime libraries into the R executable if it was not specified as part of ‘CC’ when R
was built.

For options available via the environment variable ASAN_OPTIONS see https://code.google.
com/p/address-sanitizer/wiki/Flags#Run-time_flags. With gcc additional control is
available via the —-params flag: see its man page. For some builds on x86_64 Linux this in-
cludes enabling the leak sanitizer (https://code.google.com/p/address-sanitizer/wiki/
LeakSanitizer), which might even be enabled by default: this means any leaks give the process
a failure error status (by default 23). To disable this and some strict checking use

setenv ASAN_OPTIONS ’alloc_dealloc_mismatch=0:detect_leaks=0’

For more detailed information R can be run under a debugger with a breakpoint set before
the address sanitizer report is produced: for gdb or 11db you could use

break __asan_report_error

(See http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer#gdb.)

4.3.4 Using the Undefined Behaviour Sanitizer

‘UBSanitizer’ is a tool for C/C++ source code selected by -fsanitize=undefined in suitable
builds of clang, and GCC as from 4.9.0.

‘Undefined behaviour’ is where the language standard does not require particular behaviour
from the compiler. Examples include division by zero (where for doubles R requires the
ISO/IEC 60559 behaviour but C/C++ do not), use of zero-length arrays, shifts too far for signed
types (e.g. int x, y; y = x << 31;), out-of-range coercion, invalid C++ casts and mis-alignment.
Not uncommon examples of out-of-range coercion in R are attempts to coerce a NalN to type int
or NA_INTEGER to an unsigned type such as size_t. Also common is y[x - 1] forgetting that x
might be NA_INTEGER.

This sanitizer can be combined with the Address Sanitizer by
-fsanitize=undefined,address. Its runtime library is linked into each package’s
DLL, so it is less often needed to be included in MAIN_LDFLAGS.

Finer control of what is checked can be achieved by other options: for clang see http://
clang.llvm.org/docs/UsersManual . html#controlling-code-generation. The current set
for clang is (on a single line):

-fsanitize=alignment,array-bounds,bool,enum,float-cast-overflow,
float-divide-by-zero,function,integer-divide-by-zero,null,object-size,
return,shift,signed-integer-overflow,unreachable,vla-bound,vptr

a subset of which could be combined with address, or use something like
-fsanitize=undefined -fno-sanitize=float-divide-by-zero
In addition,
-fsanitize=unsigned-integer-overflow

is available as a separate option in some versions of clang (not enabled by
-fsanitize=undefined).

A smaller selection is available for GCC, currently defaulting to
-fsanitize=integer-divide-by-zero,null,return,shift,signed-integer-overflow,unreachabl.

with

https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
http://code.google.com/p/address-sanitizer/wiki/AddressSanitizer#gdb
http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
http://clang.llvm.org/docs/UsersManual.html#controlling-code-generation

Chapter 4: Debugging 87

-fsanitize=float-divide-by-zero
as a separate option not enabled by -fsanitize=undefined.
Other useful flags include
-no-fsanitize=recover
which causes the first report to be fatal (it always is for the unreachable and return subop-
tions).
There are also the compiler flags -fcatch-undefined-behavior and -ftrapv, said to be
more reliable in clang than gcc.

For more details on the topic see http://blog.regehr.org/archives/213 and http://
blog.1llvm.org/2011/05/what-every-c-programmer-should-know.html (which has 3 parts).

This option does not currently compile OpenMP code.

4.3.5 Other analyses with ‘clang’

clang has a ‘Static Analyser’ run on the source files during compilation: see http: //
clang-analyzer.llvm.org/.

Some versions of clang have a (currently experimental) memory sanitizer invoked by
-fsanitize=memory which detects uses of uninitialized memory. See http://clang.llvm.
org/docs/MemorySanitizer.html.

For x86_64 Linux there is a leak sanitizer: see https: / /code . google . com /p /
address-sanitizer/wiki/LeakSanitizer: one way to invoke this from an ASAN-enabled
build is by the environment variable

ASAN_OPTIONS=’detect_leaks=1’

4.3.6 Using ‘Dr. Memory’

‘Dr. Memory’ from http://www.drmemory .org/ is a memory checker for (currently) 32-bit
Windows and Linux with similar aims to valgrind. It works with unmodified executables” and
detects memory access errors, uninitialized reads and memory leaks.

4.3.7 Fortran array bounds checking

Most of the Fortran compilers used with R allow code to be compiled with checking of array
bounds: for example gfortran has option —~fbounds-check and Solaris Studio has -C. This will
give an error when the upper or lower bound is exceeded, e.g.
At line 97 of file .../src/appl/dqrdc2.f
Fortran runtime error: Index ’1’ of dimension 1 of array ’x’ above upper bound of O
One does need to be aware that lazy programmers often specify Fortran dimensions as 1
rather than * or a real bound and these will be reported.
It is easy to arrange to use this check on just the code in your package: add to “/.R/Makevars
something like (for gfortran)
FCFLAGS = -g -02 -mtune=native -fbounds-check
FFLAGS = -g -02 -mtune=native -fbounds-check
when you run R CMD check.
This may report incorrectly errors with the way that Fortran character variables are passed,
particularly when Fortran subroutines are called from C code. This may include® the use of

BLAS and LAPACK subroutines in R, so it is not advisable to build R itself with bounds
checking (and may not even be possible as these subroutines are called during the R build).

7 but works better if inlining and frame pointer optimizations are disabled.
8 depending on the compiler version, with gfortran 4.8.x doing this less than 4.7.x.

http://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://clang-analyzer.llvm.org/
http://clang-analyzer.llvm.org/
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
http://www.drmemory.org/

Chapter 4: Debugging 88

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug compiled code loaded into
R. This section is geared to platforms using gdb with code compiled by gcc, but similar things
are possible with other debuggers such as 11db (http://11db.11lvm.org/, used on OS X) and
Sun’s dbx: some debuggers have graphical front-ends available.

Consider first ‘crashes’, that is when R terminated unexpectedly with an illegal memory
access (a ‘segfault’ or ‘bus error’), illegal instruction or similar. Unix-alike versions of R use a
signal handler which aims to give some basic information. For example

**x* caught segfault *xxx*
address 0x20000028, cause ’memory not mapped’

Traceback:

1: .identC(class1[[1]], class2)

2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,
where = where))

3: validObject(t(cu))

4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),
validObject (t(tu)))

Possible actioms:

1: abort (with core dump)

2: normal R exit

3: exit R without saving workspace
4: exit R saving workspace
Selection: 3

Since the R process may be damaged, the only really safe options are the first or third. (Note
that a core dump is only produced where enabled: a common default in a shell is to limit its
size to 0, thereby disabling it.)

A fairly common cause of such crashes is a package which uses .C or .Fortran and writes
beyond (at either end) one of the arguments it is passed. As from R 3.0.0 there is a good way
to detect this: using options(CBoundsCheck = TRUE) (which can be selected via the environ-
ment variable R_C_BOUNDS_CHECK=yes) changes the way .C and .Fortran work to check if the
compiled code writes in the 64 bytes at either end of an argument.

Another cause of a ‘crash’ is to overrun the C stack. R tries to track that in its own code,
but it may happen in third-party compiled code. For modern POSIX-compliant OSes R can
safely catch that and return to the top-level prompt, so one gets something like

> .C("aaa")
Error: segfault from C stack overflow
>

However, C stack overflows are fatal under Windows and normally defeat attempts at debugging
on that platform. Further, the size of the stack is set when R is compiled, whereas on POSIX
OSes it can be set in the shell from which R is launched.

If you have a crash which gives a core dump you can use something like
gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors that do not generate a
dump one can run R directly under a debugger by for example

$ R -d gdb --vanilla

gdb> run

http://lldb.llvm.org/

Chapter 4: Debugging 89

at which point R will run normally, and hopefully the debugger will catch the error and return
to its prompt. This can also be used to catch infinite loops or interrupt very long-running code.
For a simple example

> for(i in 1:1e7) x <- rnorm(100)
[hit Ctrl-C]
Program received signal SIGINT, Interrupt.
0x00397682 in _int_free () from /lib/tls/libc.so0.6
(gdb) where
#0 0x00397682 in _int_free () from /1ib/tls/libc.so.6
#1 0x00397eba in free () from /1ib/tls/libc.so.6
#2 0xb7cf2551 in R_gc_internal (size_needed=313)
at /users/ripley/R/svn/R-devel/src/main/memory.c:743
#3 0xb7cf3617 in Rf_allocVector (type=13, length=626)
at /users/ripley/R/svn/R-devel/src/main/memory.c:1906
#4 0xb7c3f6d3 in PutRNGstate ()
at /users/ripley/R/svn/R-devel/src/main/RNG.c:351
#5 O0xb7d6cO0ab in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,
rho=0x9698£28) at /users/ripley/R/svn/R-devel/src/main/random.c:183

In many cases it is possible to attach a debugger to a running process: this is helpful if an
alternative front-end is in use or to investigate a task that seems to be taking far too long. This
is done by something like

gdb -p pid
where pid is the id of the R executable or front-end. This stops the process so its state can be
examined: use continue to resume execution.

Some “tricks” worth knowing follow:

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded into R cannot have
breakpoints set within it until it is loaded. To use a symbolic debugger on such dynamically
loaded code under Unix-alikes use

e Call the debugger on the R executable, for example by R -d gdb.

e Start R.

e At the R prompt, use dyn.load or library to load your shared object.

e Send an interrupt signal. This will put you back to the debugger prompt.

Set the breakpoints in your code.

Continue execution of R by typing signal ORET.

Under Windows signals may not be able to be used, and if so the procedure is more com-
plicated. See the rw-FAQ and www.stats.uwo.ca/faculty/murdoch/software/debuggingR/
gdb.shtml.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function PrintValue (SEXP s) which
uses the normal R printing mechanisms to print the R object pointed to by s, or the safer version
R_PV(SEXP s) which will only print ‘objects’.

One way to make use of PrintValue is to insert suitable calls into the code to be debugged.

Another way is to call R_PV from the symbolic debugger. (PrintValue is hidden as Rf_
PrintValue.) For example, from gdb we can use

http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml

Chapter 4: Debugging

(gdb) p R_PV(ab)

90

using the object ab from the convolution example, if we have placed a suitable breakpoint in

the convolution C code.
To examine an arbitrary R object we need to work a little harder. For example, let

R> DF <- data.frame(a = 1:3, b = 4:6)

By setting a breakpoint at do_get and typing get ("DF") at the R prompt, one can find out the

address in memory of DF, for example

Value returned is $1 = (SEXPREC *) 0x40583elc
(gdb) p *$1
$2 = {
sxpinfo = {type = 19, obj = 1, named = 1, gp = O,
mark = 0, debug = 0, trace = 0, = 0},
attrib = 0x40583e80,

u={
vecsxp = {
length = 2,
type = {c =

0x40634700 "0>X@D>XQ0>X@", i = 0x40634700,
f = 0x40634700, z = 0x40634700, s = 0x40634700%},
truelength = 1075851272,
1,
primsxp = {offset = 2},
symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},

listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},

envsxp = {frame = 0x2, enclos = 0x40634700},
closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},
promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008%}

(Debugger output reformatted for better legibility).

Using R_PV() one can “inspect” the values of the various elements of the SEXP, for example,

(gdb) p R_PV($1->attrib)
$names
[1] IIall llb"

$row.names
[1] ||1|| "2" ||3||

$class
[1] "data.frame"

$3 = void

To find out where exactly the corresponding information is stored, one needs to go “deeper”:

Chapter 4: Debugging 91

(gdb) set $a = $1->attrib

(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c

$4 = 0x405d40e8 "names"

(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1l]->u.vecsxp.type.c
$5 = 0x40634378 "b"

(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.il[0]

$6 = 1
(gdb) p $1->u.vecsxp.type.s[1l]->u.vecsxp.type.i[1]
$7 = 5

Another alternative is the R_inspect function which shows the low-level structure of the ob-
jects recursively (addresses differ from the above as this example is created on another machine):

(gdb) p R_inspect($1)
©@100954d18 19 VECSXP gOc2 [0BJ,NAM(2),ATT] (len=2, t1=0)
@100954d50 13 INTSXP gOc2 [NAM(2)] (len=3, tl1l=0) 1,2,3
@100954d88 13 INTSXP gOc2 [NAM(2)] (len=3, t1l=0) 4,5,6
ATTRIB:
©102a70140 02 LISTSXP g0cO []
TAG: ©@10083c478 01 SYMSXP gOcO [MARK,NAM(2),gp=0x4000] "names"
©100954dc0 16 STRSXP g0c2 [NAM(2)] (len=2, t1=0)
©10099d£28 09 CHARSXP gOcl [MARK,gp=0x21] "a"
010095e518 09 CHARSXP gOcl [MARK,gp=0x21] "b"
TAG: @100859e60 01 SYMSXP gOcO [MARK,NAM(2),gp=0x4000] "row.names"
©@102a6£868 13 INTSXP gOcl [NAM(2)] (len=2, tl=1) -2147483648,-3
TAG: ©@10083c948 01 SYMSXP gOcO [MARK,gp=0x4000] "class"
©102a6£838 16 STRSXP gOcl [NAM(2)] (len=1, tl=1)
©@1008c6d48 09 CHARSXP gOc2 [MARK,gp=0x21,ATT] "data.frame"

In general the representation of each object follows the format:
@<address> <type-nr> <type-name> <gc-info> [<flags>] ...
For a more fine-grained control over the the depth of the recursion and the output of vectors

R_inspect3 takes additional two character() parameters: maximum depth and the maximal
number of elements that will be printed for scalar vectors. The defaults in R_inspect are

currently -1 (no limit) and 5 respectively.

Chapter 5: System and foreign language interfaces 92

5 System and foreign language interfaces

5.1 Operating system access

Access to operating system functions is via the R functions system and system2. The details
will differ by platform (see the on-line help), and about all that can safely be assumed is that
the first argument will be a string command that will be passed for execution (not necessarily
by a shell) and the second argument to system will be internal which if true will collect the
output of the command into an R character vector.

On POSIX-compliant OSes these commands pass a command-line to a shell: Windows is not
POSIX-compliant and there is a separate function shell to do so.

The function system.time is available for timing. Timing on child processes is only available
on Unix-alikes, and may not be reliable there.

5.2 Interface functions .C and .Fortran

These two functions provide an interface to compiled code that has been linked into R, either
at build time or via dyn.load (see Section 5.3 [dyn.load and dyn.unload]|, page 94). They are
primarily intended for compiled C and FORTRAN 77 code respectively, but the .C function can
be used with other languages which can generate C interfaces, for example C++ (see Section 5.6
[Interfacing C++ code], page 100).

The first argument to each function is a character string specifying the symbol name as
known' to C or FORTRAN, that is the function or subroutine name. (That the symbol is
loaded can be tested by, for example, is.loaded("cg"). Use the name you pass to .C or
.Fortran rather than the translated symbol name.)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for the
components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R atomic vectors and the types
of arguments to a C function or FORTRAN subroutine.

R storage mode C type FORTRAN type
logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char *x CHARACTER*255
raw unsigned char * none

Do please note the first two. On the 64-bit Unix/Linux/OS X platforms, long is 64-bit
whereas int and INTEGER are 32-bit. Code ported from S-PLUS (which uses long * for logical
and integer) will not work on all 64-bit platforms (although it may appear to work on some,
including Windows). Note also that if your compiled code is a mixture of C functions and
FORTRAN subprograms the argument types must match as given in the table above.

C type Rcomplex is a structure with double members r and i defined in the header file R_
ext/Complex.h included by R.h. (On most platforms this is stored in a way compatible with the
C99 double complex type: however, it may not be possible to pass Rcomplex to a C99 function
expecting a double complex argument. Nor need it be compatible with a C++ complex type.
Moreover, the compatibility can depends on the optimization level set for the compiler.)

1 possibly after some platform-specific translation, e.g. adding leading or trailing underscores.

Chapter 5: System and foreign language interfaces 93

Only a single character string can be passed to or from FORTRAN, and the success of this
is compiler-dependent. Other R objects can be passed to .C, but it is much better to use one of
the other interfaces.

It is possible to pass numeric vectors of storage mode double to C as float * or to FORTRAN
as REAL by setting the attribute Csingle, most conveniently by using the R functions as.single,
single or mode. This is intended only to be used to aid interfacing existing C or FORTRAN
code.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK is true), and the compiled code should return one of these three values. (Non-zero values
other than INT_MIN are mapped to TRUE.)

Unless formal argument NAOK is true, all the other arguments are checked for missing values
NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of these generates
an error. If it is true, these values are passed unchecked.

Argument PACKAGE confines the search for the symbol name to a specific shared object (or
use "base" for code compiled into R). Its use is highly desirable, as there is no way to avoid two
package writers using the same symbol name, and such name clashes are normally sufficient to
cause R to crash. (If it is not present and the call is from the body of a function defined in a
package namespace, the shared object loaded by the first (if any) useDynLib directive will be
used. However, prior to R 2.15.2 the detection of the correct namespace is unreliable and you
are strongly recommended to use the PACKAGE argument for packages to be used with earlier
versions of R.

Note that the compiled code should not return anything except through its arguments: C
functions should be of type void and FORTRAN subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences.
(This is hard to do fast in interpreted R code, but easy in C code.) We could do this using .C
by

void convolve(double *a, int *na, double *b, int *nb, double *ab)

{

int nab = *na + *nb - 1;

for(int i 0; i < nab; i++)
ab[i] = 0.0;
for(int i = 0; i < *na; i++)
for(int j = 0; j < *nb; j++)
abli + jl += alil =* bl[jl;

}
called from R by

conv <- function(a, b)
.C("convolve",

as.double(a),

as.integer(length(a)),

as.double(b),

as.integer (length(b)),

ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R storage mode before

calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

Special care is needed in handling character vector arguments in C (or C++). On entry the
contents of the elements are duplicated and assigned to the elements of a char ** array, and on
exit the elements of the C array are copied to create new elements of a character vector. This

Chapter 5: System and foreign language interfaces 94

means that the contents of the character strings of the char ** array can be changed, including
to \0 to shorten the string, but the strings cannot be lengthened. It is possible? to allocate a
new string via R_alloc and replace an entry in the char ** array by the new string. However,
when character vectors are used other than in a read-only way, the .Call interface is much to
be preferred.

Passing character strings to FORTRAN code needs even more care, and should be avoided
where possible. Only the first element of the character vector is passed in, as a fixed-length
(255) character array. Up to 255 characters are passed back to a length-one character vector.
How well this works (or even if it works at all) depends on the C and FORTRAN compilers on
each platform (including on their options). Often what is being passed to FORTRAN is one of
a small set of possible values (a factor in R terms) which could alternatively be passed as an
integer code: similarly FORTRAN code that wants to generate diagnostic messages can pass an
integer code to a C or R wrapper which will convert it to a character string.

It is possible to pass some R objects other than atomic vectors via .C, but this is only
supported for historical compatibility: use the .Call or .External interfaces for such objects.
Any C/C++ code that includes Rinternals.h should be called via .Call or .External.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object (Unix-alikes including OS X, see
Section 5.5 [Creating shared objects], page 99 for more information) or DLL (Windows).

The shared object/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading is
not normally necessary, but it is needed to allow the DLL to be re-built on some platforms,

including Windows.

The first argument to both functions is a character string giving the path to the object.
Programmers should not assume a specific file extension for the object/DLL (such as .so) but
use a construction like

file.path(pathl, path2, pasteO("mylib", .Platform$dynlib.ext))

for platform independence. On Unix-alike systems the path supplied to dyn.load can be an
absolute path, one relative to the current directory or, if it starts with *~’, relative to the user’s
home directory.

Loading is most often done automatically based on the useDynLib() declaration in the
NAMESPACE file, but may be done explicitly via a call to library.dynam. This has the form

library.dynam("libname", package, 1lib.loc)

where 1ibname is the object/DLL name with the extension omitted. Note that the first argument,
chname, should not be package since this will not work if the package is installed under another
name.

Under some Unix-alike systems there is a choice of how the symbols are resolved when the
object is loaded, governed by the arguments local and now. Only use these if really neces-
sary: in particular using now=FALSE and then calling an unresolved symbol will terminate R
unceremoniously.

R provides a way of executing some code automatically when a object/DLL is either loaded
or unloaded. This can be used, for example, to register native routines with R’s dynamic symbol
mechanism, initialize some data in the native code, or initialize a third party library. On loading
a DLL, R will look for a routine within that DLL named R_init_1ib where lib is the name of
the DLL file with the extension removed. For example, in the command

library.dynam("mylib", package, lib.loc)

2 Note that this is then not checked for over-runs by option CBoundsCheck = TRUE.

Chapter 5: System and foreign language interfaces 95

R looks for the symbol named R_init_mylib. Similarly, when unloading the object, R looks for
a routine named R_unload_lib, e.g., R_unload_mylib. In either case, if the routine is present,
R will invoke it and pass it a single argument describing the DLL. This is a value of type D11Info
which is defined in the Rdynload.h file in the R_ext directory.

Note that there are some implicit restrictions on this mechanism as the basename of the DLL
needs to be both a valid file name and valid as part of a C entry point (e.g. it cannot contain ‘.’):
for portable code it is best to confine DLL names to be ASCII alphanumeric plus underscore. If
entry point R_init_1ib is not found it is also looked for with ‘.’ replaced by ‘_’.

The following example shows templates for the initialization and unload routines for the
mylib DLL.
(N
#include <R.h>
#include <Rintermals.h>
#include <R_ext/Rdynload.h>

void
R_init_mylib(D1lInfo *info)
{
/* Register routines,
allocate resources. */

void

R_unload_mylib(D11lInfo *info)

{
/* Release resources. */

3
x J

If a shared object/DLL is loaded more than once the most recent version is used. More
generally, if the same symbol name appears in several shared objects, the most recently loaded
occurrence is used. The PACKAGE argument and registration (see the next section) provide good
ways to avoid any ambiguity in which occurrence is meant.

On Unix-alikes the paths used to resolve dynamically linked dependent libraries are fixed (for
security reasons) when the process is launched, so dyn.load will only look for such libraries in
the locations set by the R shell script (via etc/ldpaths) and in the OS-specific defaults.

Windows allows more control (and less security) over where dependent DLLs are looked for.
On all versions this includes the PATH environment variable, but with lowest priority: note that
it does not include the directory from which the DLL was loaded. It is possible to add a single
path with quite high priority via the DLLpath argument to dyn.load. This is (by default) used
by library.dynam to include the package’s 1ibs/i386 or 1ibs/x64 directory in the DLL search
path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.

In calls to .C, .Call, .Fortran and .External, R must locate the specified native routine by
looking in the appropriate shared object/DLL. By default, R uses the operating system-specific
dynamic loader to lookup the symbol in all loaded DLLs and elsewhere. Alternatively, the
author of the DLL can explicitly register routines with R and use a single, platform-independent
mechanism for finding the routines in the DLL. One can use this registration mechanism to
provide additional information about a routine, including the number and type of the arguments,

Chapter 5: System and foreign language interfaces 96

and also make it available to R programmers under a different name. In the future, registration
may be used to implement a form of “secure” or limited native access.

To register routines with R, one calls the C routine R_registerRoutines. This is typically
done when the DLL is first loaded within the initialization routine R_init_d11 name described in
Section 5.3 [dyn.load and dyn.unload], page 94. R_registerRoutines takes 5 arguments. The
first is the D11Info object passed by R to the initialization routine. This is where R stores the
information about the methods. The remaining 4 arguments are arrays describing the routines
for each of the 4 different interfaces: .C, .Call, .Fortran and .External. Each argument is a
FIND-terminated array of the element types given in the following table:

.C R_CMethodDef
.Call R_CallMethodDef
.Fortran R_FortranMethodDef

.External R_ExternalMethodDef

Currently, the R_ExternalMethodDef is the same as R_CallMethodDef type and contains
fields for the name of the routine by which it can be accessed in R, a pointer to the actual native
symbol (i.e., the routine itself), and the number of arguments the routine expects to be passed
from R. For example, if we had a routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);
we would describe this as

R_CallMethodDef callMethods[] = {
{"myCall", (DL_FUNC) &myCall, 3},
{NULL, NULL, O}
s
along with any other routines for the .Call interface. For routines with a variable number of
arguments invoked via the .Extermal interface, one specifies -1 for the number of arguments
which tells R not to check the actual number passed. Note that the number of arguments passed
to .External were not checked prior to R 3.0.0.

Routines for use with the .C and .Fortran interfaces are described with similar data struc-
tures, but which have two additional fields for describing the type and “style” of each argument.
Each of these can be omitted. However, if specified, each should be an array with the same
number of elements as the number of parameters for the routine. The types array should con-
tain the SEXP types describing the expected type of the argument. (Technically, the elements
of the types array are of type R_NativePrimitiveArgType which is just an unsigned integer.)
The R types and corresponding type identifiers are provided in the following table:

numeric REALSXP
integer INTSXP
logical LGLSXP
single SINGLESXP
character STRSXP
list VECSXP

Consider a C routine, myC, declared as
void myC(double *x, int *n, char **names, int *status);
We would register it as
R_CMethodDef cMethods[] = {
{"myC", (DL_FUNC) &myC, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},
{NULL, NULL, O}
};
One can also specify whether each argument is used simply as input, or as output, or as both
input and output. The style field in the description of a method is used for this. The purpose is

Chapter 5: System and foreign language interfaces 97

to allow® R to transfer values more efficiently across the R-C/FORTRAN interface by avoiding
copying values when it is not necessary. Typically, one omits this information in the registration
data.

Having created the arrays describing each routine, the last step is to actually register them
with R. We do this by calling R_registerRoutines. For example, if we have the descriptions
above for the routines accessed by the .C and .Call we would use the following code:

void
R_init_myLib(D11lInfo *info)
{
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
}

This routine will be invoked when R loads the shared object/DLL named myLib. The last
two arguments in the call to R_registerRoutines are for the routines accessed by .Fortran
and .External interfaces. In our example, these are given as NULL since we have no routines of
these types.

When R unloads a shared object/DLL, its registrations are automatically removed. There is
no other facility for unregistering a symbol.

Examples of registering routines can be found in the different packages in the R source tree
(e.g., stats). Also, there is a brief, high-level introduction in R News (volume 1/3, September
2001, pages 2023, http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf).

Once routines are registered, they can be referred to as R objects if they this is arranged
in the useDynLib call in the package’s NAMESPACE file (see Section 1.5.4 [useDynLib|, page 38).
This avoids the overhead of looking up an entry point each time it is used, and ensure that
the entry point in the package is the one used (without a PACKAGE = "pkg" argument). So for
example the stats package has

Refer to all C/Fortran routines by their name prefixed by C_
useDynLib(stats, .registration = TRUE, .fixes = "C_")

in its NAMESPACE file, and then ansari.test’s default methods can contain

pansari <- function(q, m, n)
.C(C_pansari, as.integer(length(q)), p = as.double(q),
as.integer(m), as.integer(n))$p

5.4.1 Speed considerations

Sometimes registering native routines or using a PACKAGE argument can make a large difference.
The results can depend quite markedly on the OS (and even if it is 32- or 64-bit), on the version
of R and what else is loaded into R at the time.

To fix ideas, first consider x84_64 OS 10.7 and R 2.15.2. A simple .Call function might be
foo <- function(x) .Call("foo", x)
with C code

SEXP foo (SEXP x)
{

return Xx;

}

If we compile with by R CMD SHLIB foo.c, load the code by dyn.load("foo.s0") and run
foo(pi) it took around 22 microseconds (us). Specifying the DLL by

3 but this is not currently done.

http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

Chapter 5: System and foreign language interfaces 98

fo02 <- function(x) .Call("foo", x, PACKAGE = "foo")
reduced the time to 1.7 us.

Now consider making these functions part of a package whose NAMESPACE file uses
useDynlib(foo). This immediately reduces the running time as "foo" will be preferentially
looked for foo.dll. Without specifying PACKAGE it took about 5 us (it needs to fathom out
the appropriate DLL each time it is invoked but it does not need to search all DLLs), and with
the PACKAGE argument it is again about 1.7 us.

Next suppose the package has registered the native routine foo. Then foo () still has to find
the appropriate DLL but can get to the entry point in the DLL faster, in about 4.2 us. And
fo02() now takes about 1 us. If we register the symbols in the NAMESPACE file and use

foo3 <- function(x) .Call(C_foo, x)

then the address for the native routine is looked up just once when the package is loaded,
and foo3(pi) takes about 0.8 us.

Versions using .C() rather than .Call() take about 0.2 us longer.

These are all quite small differences, but C routines are not uncommonly invoked millions of
times for run times of a few microseconds, and those doing such things may wish to be aware of
the differences.

On Linux and Solaris there is a much smaller overhead in looking up symbols so foo(pi)
takes around 5 times as long as foo3(pi).

Symbol lookup on Windows used to be far slower, so R maintains a small cache. If the cache
is currently empty enough that the symbol can be stored in the cache then the performance
is similar to Linux and Solaris: if not it may be slower. R’s own code always uses registered
symbols and so these never contribute to the cache: however many other packages do rely on
symbol lookup.

5.4.2 Linking to native routines in other packages

In addition to registering C routines to be called by R, it can at times be useful for one package
to make some of its C routines available to be called by C code in another package. The interface
consists of two routines declared in header R_ext/Rdynload.h as

void R_RegisterCCallable(const char *package, const char *name,
DL_FUNC fptr);
DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun available to C code in other packages
would include the call

R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package packB that wants to use this routine
would retrieve the function pointer with a call of the form

p_myCfun = R_GetCCallable("packA", "myCfun");

The author of packB is responsible for ensuring that p_myCfun has an appropriate declaration.
In the future R may provide some automated tools to simplify exporting larger numbers of
routines.

A package that wishes to make use of header files in other packages needs to declare them
as a comma-separated list in the field ‘LinkingTo’ in the DESCRIPTION file. This then arranges
that the include directories in the installed linked-to packages are added to the include paths
for C and C++ code.

Chapter 5: System and foreign language interfaces 99

It must specify? ‘Imports’ or ‘Depends’ of those packages, for they have to be loaded® prior
to this one (so the path to their compiled code has been registered).

A CRAN example of the use of this mechanism is package lme4, which links to Matrix.

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD SHLIB. This accepts as arguments
a list of files which must be object files (with extension .o) or sources for C, C++, FORTRAN
77, Fortran 9x, Objective C or Objective C++ (with extensions .c, .cc or .cpp, .f, .£90 or
.£95, .m, and .mm or .M, respectively), or commands to be passed to the linker. See R CMD SHLIB
--help (or the R help for SHLIB) for usage information.

If compiling the source files does not work “out of the box”, you can specify additional flags
by setting some of the variables PKG_CPPFLAGS (for the C preprocessor, typically ‘-1’ flags), PKG_
CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS, PKG_FCFLAGS, PKG_OBJCFLAGS, and PKG_0BJCXXFLAGS (for
the C, C++, FORTRAN 77, Fortran 9x, Objective C, and Objective C++ compilers, respectively)
in the file Makevars in the compilation directory (or, of course, create the object files directly
from the command line). Similarly, variable PKG_LIBS in Makevars can be used for additional
‘-1’ and ‘-L’ flags to be passed to the linker when building the shared object. (Supplying linker
commands as arguments to R CMD SHLIB will take precedence over PKG_LIBS in Makevars.)

It is possible to arrange to include compiled code from other languages by setting the macro
‘OBJECTS’ in file Makevars, together with suitable rules to make the objects.

Flags which are already set (for example in file etcR_ARCH/Makeconf) can be overridden by
the environment variable MAKEFLAGS (at least for systems using a POSIX-compliant make), as
in (Bourne shell syntax)

MAKEFLAGS="CFLAGS=-03" R CMD SHLIB *.c
It is also possible to set such variables in personal Makevars files, which are read after the
local Makevars and the system makefiles or in a site-wide Makevars.site file. See Section
“Customizing package compilation” in R Installation and Administration,

Note that as R CMD SHLIB uses Make, it will not remake a shared object just because the flags
have changed, and if test.c and test.f both exist in the current directory

R CMD SHLIB test.f
will compile test.c!

If the src subdirectory of an add-on package contains source code with one of the extensions
listed above or a file Makevars but not a file Makefile, R CMD INSTALL creates a shared object
(for loading into R through useDynlib in the NAMESPACE, or in the .onLoad function of the
package) using the R CMD SHLIB mechanism. If file Makevars exists it is read first, then the
system makefile and then any personal Makevars files.

If the src subdirectory of package contains a file Makefile, this is used by R CMD
INSTALL in place of the R CMD SHLIB mechanism. make is called with makefiles R_HOME/etcR_
ARCH/Makeconf, src/Makefile and any personal Makevars files (in that order). The first
target found in src/Makefile is used.

It is better to make use of a Makevars file rather than a Makefile: the latter should be
needed only exceptionally.

Under Windows the same commands work, but Makevars.win will be used in preference
to Makevars, and only src/Makefile.win will be used by R CMD INSTALL with src/Makefile
being ignored. For past experiences of building DLLs with a variety of compilers, see
file ‘README.packages’ and http: //www .stats .uwo . ca/faculty /murdoch /software /

4 whether or not ‘LinkingTo’ is used.
5 so there needs to be a corresponding import or importFrom entry in the NAMESPACE file.

http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=Matrix
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/

Chapter 5: System and foreign language interfaces 100

compilingDLLs / . Under Windows you can supply an exports definitions file called
dllname-win.def: otherwise all entry points in objects (but not libraries) supplied to R CMD
SHLIB will be exported from the DLL. An example is stats-win.def for the stats package: a
CRAN example in package fastICA.

If you feel tempted to read the source code and subvert these mechanisms, please resist. Far
too much developer time has been wasted in chasing down errors caused by failures to follow
this documentation, and even more by package authors demanding explanations as to why their
packages no longer work. In particular, undocumented environment or make variables are not
for use by package writers and are subject to change without notice.

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of the two files X.h and
X.cpp, and implementing the two classes X and Y which we want to use in R.

(M
// X.h

class X {
public: X O; "X O;
}s

class Y {
public: Y O); “Y O;

};
N Y,

(B
// X.cpp

#include <R.h>
#include "X.h"

static Y y;

X::X(O { REprintf("constructor X\n"); }
X::"X() { REprintf("destructor X\n"); 1}
Y::YO)O { REprintf("constructor Y\n"); }
Y::"Y() { REprintf("destructor Y\n"); 1}

To use with R, the only thing we have to do is writing a wrapper function and ensuring that
the function is enclosed in

extern "C" {

For example,

http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://www.stats.uwo.ca/faculty/murdoch/software/compilingDLLs/
http://CRAN.R-project.org/package=fastICA

Chapter 5: System and foreign language interfaces 101

()
// X_main.cpp:

#include "X.h"
extern "C" {
void X_main () {

X x;
}

} // extern "C"
k J

Compiling and linking should be done with the C++ compiler-linker (rather than the C
compiler-linker or the linker itself); otherwise, the C++ initialization code (and hence the con-
structor of the static variable Y) are not called. On a properly configured system, one can simply
use

R CMD SHLIB X.cpp X_main.cpp

to create the shared object, typically X.so (the file name extension may be different on your
platform). Now starting R yields

R version 2.14.1 Patched (2012-01-16 r58124)
Copyright (C) 2012 The R Foundation for Statistical Computing

Type "qOO" to quit R.

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))
constructor Y

R> .C("X_main")

constructor X

destructor X

1list O

R> q(Q)

Save workspace image? [y/n/c]l: y

destructor Y

The R for Windows FAQ (rw-FAQ) contains details of how to compile this example under
Windows.

Earlier version of this example used C++ iostreams: this is best avoided. There is no guarantee
that the output will appear in the R console, and indeed it will not on the R for Windows console.
Use R code or the C entry points (see Section 6.5 [Printing], page 129) for all I/O if at all possible.
Examples have been seen where merely loading a DLL that contained calls to C++ I/O upset
R’s own C I/O (for example by resetting buffers on open files).

Most R header files can be included within C++ programs, and they should not be included
within an extern "C" block (as they include C++ system headers). It may not be possible to
include some R headers as they in turn include C header files that may cause conflicts—if this
happens, define ‘NO_C_HEADERS’ before including the R headers, and include C++ versions (such
as ‘cmath’) of the appropriate headers yourself before the R headers.

5.7 Fortran I/O

We have already warned against the use of C++ iostreams not least because output is not
guaranteed to appear on the R console, and this warning applies equally to Fortran (77 or 9x)
output to units * and 6. See Section 6.5.1 [Printing from FORTRAN], page 129, which describes
workarounds.

Chapter 5: System and foreign language interfaces 102

In the past most Fortran compilers implemented I/O on top of the C I/O system and so the
two interworked successfully. This was true of g77, but it is less true of gfortran as used in
gce 4.y.z. In particular, any package that makes use of Fortran I/O will when compiled on
Windows interfere with C I/O: when the Fortran I/O is initialized (typically when the package
is loaded) the C stdout and stderr are switched to LF line endings. (Function init in file
src/modules/lapack/init_win.c shows how to mitigate this.)

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a DLL provided by package
packB (for the security reasons mentioned in Section 5.3 [dyn.load and dyn.unload|, page 94,

and also because some platforms distinguish between shared objects and dynamic libraries), but
it is on Windows.

Note that there can be tricky versioning issues here, as package packB could be re-installed af-
ter package packA — it is desirable that the API provided by package packB remains backwards-
compatible.

Shipping a static library in package packB for other packages to link to avoids most of the
difficulties.

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a library provided by package packB
under limited circumstances on a Unix-alike OS. There are severe portability issues, so this is
not recommended for a distributed package.

This is easiest if packB provides a static library packB/lib/libpackB.a. (Note using di-
rectory 1ib rather than 1ibs is conventional, and architecture-specific sub-directories may be
needed and are assumed in the sample code below. The code in the static library will need to be
compiled with PIC flags on platforms where it matters.) Then as the code from package packB
is incorporated when package packA is installed, we only need to find the static library at install
time for package packA. The only issue is to find package packB, and for that we can ask R by
something like (long lines broken for display here)

PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE))’ \
| "${R_HOME}/bin/R" --vanilla --slave®
PKG_LIBS="$ (PKGB_PATH) $ (R_ARCH) /1ibpackB.a"

For a dynamic library packB/1ib/1libpackB.so (packB/1lib/1libpackB.dylib on OS X: note
that you cannot link to a shared object, .so, on that platform) we could use

PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE))’ \
| "${R_HOME}/bin/R" --vanilla --slave‘
PKG_LIBS=-L"$(PKGB_PATH) $(R_ARCH)" -lpackB

This will work for installation, but very likely not when package packB is loaded, as the path
to package packB’s 1ib directory is not in the 1d.so® search path. You can arrange to put it
there before R is launched by setting (on some platforms) LD_RUN_PATH or LD_LIBRARY_PATH
or adding to the 1d.so cache (see man ldconfig). On platforms that support it, the path to
the directory containing the dynamic library can be hardcoded at install time (which assumes
that the location of package packB will not be changed nor the package updated to a changed
API). On systems with the gcc or clang and the GNU linker (e.g. Linux) and some others (e.g.
OS X)) this can be done by e.g.

6 dyld on OS X, and DYLD_LIBRARY_PATHS below.

Chapter 5: System and foreign language interfaces 103

PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE)))’ \
| "${R_HOME}/bin/R" --vanilla --slave®
PKG_LIBS=-L"$(PKGB_PATH)$(R_ARCH)" -W1l,-rpath,"$(PKGB_PATH)$(R_ARCH)" -lpackB
Some other systems (e.g. Solaris with its native linker) use -Rdir rather than -rpath,dir (and
this is accepted by the compiler as well as the linker).

It may be possible to figure out what is required semi-automatically from the result of R CMD
libtool --config (look for ‘hardcode’), although that does not currently know the spell for
OS X (as given in the example above, as -rpath is only supported for shared objects and not
for executables).

Making headers provided by package packB available to the code to be compiled in package
packA can be done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 95).

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided by packB in DLL
packB/libs/exB.dl1, possibly the package’s DLL packB/libs/packB.d11l. (This can be ex-
tended to linking to more than one package in a similar way.) There are three issues to be
addressed:

e Making headers provided by package packB available to the code to be compiled in package
packA.
This is done by the LinkingTo mechanism (see Section 5.4 [Registering native routines|,
page 95).
e preparing packA.dll to link to packB/libs/exB.d11.
This needs an entry in Makevars.win of the form
PKG_LIBS= -L<something> -lexB
and one possibility is that <something> is the path to the installed pkgB/libs directory.
To find that we need to ask R where it is by something like
PKGB_PATH=‘echo ’library(packB);
cat(system.file("libs", package="packB", mustWork=TRUE))’ \
| rterm --vanilla --slave®
PKG_LIBS= -L"$ (PKGB_PATH)$(R_ARCH)" -lexB
Another possibility is to use an import library, shipping with package packA an exports file
exB.def. Then Makevars.win could contain
PKG_LIBS= -L. -lexB

all: $(SHLIB) before

before: libexB.dll.a

libexB.dll.a: exB.def
and then installing package packA will make and use the import library for exB.d11. (One
way to prepare the exports file is to use pexports.exe.)

e loading packA.d1l which depends on exB.d11.

If exB.d11 was used by package packB (because it is in fact packB.dll or packB.dll
depends on it) and packB has been loaded before packA, then nothing more needs to be
done as exB.d11 will already be loaded into the R executable. (This is the most common
scenario.)
More generally, we can use the DLLpath argument to library.dynam to ensure that exB.d11
is found, for example by setting

Chapter 5: System and foreign language interfaces 104

library.dynam("packA", pkg, lib,
DLLpath = system.file("libs", package="packB"))
Note that DLLpath can only set one path, and so for linking to two or more packages you
would need to resort to setting environment variable PATH.

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Traditionally this
has been done via the .C function in R. However, if a user wants to write C code using internal
R data structures, then that can be done using the .Call and .External functions. The syntax
for the calling function in R in each case is similar to that of .C, but the two functions have
different C interfaces. Generally the .Call interface is simpler to use, but .External is a little
more general.

A call to .Call is very similar to .C, for example
.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has already
been loaded into R. Up to 65 R objects can passed as arguments. The C side of the interface is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

A call to .External is almost identical
.External("convolveE", a, b)
but the C side of the interface is different, having only one argument

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)

Here args is a LISTSXP, a Lisp-style pairlist from which the arguments can be extracted.

In each case the R objects are available for manipulation via a set of functions and macros
defined in the header file Rinternals.h or some S-compatibility macros” defined in Rdefines.h.
See Section 5.10 [Interface functions .Call and .External|, page 113 for details on .Call and
.External.

Before you decide to use .Call or .External, you should look at other alternatives. First,
consider working in interpreted R code; if this is fast enough, this is normally the best option.
You should also see if using .C is enough. If the task to be performed in C is simple enough
involving only atomic vectors and requiring no call to R, .C suffices. A great deal of useful
code was written using just .C before .Call and .External were available. These interfaces
allow much more control, but they also impose much greater responsibilities so need to be used
with care. Neither .Call nor .External copy their arguments: you should treat arguments you
receive through these interfaces as read-only.

To handle R objects from within C code we use the macros and functions that have been
used to implement the core parts of R. A public® subset of these is defined in the header

" That is, similar to those defined in S version 4 from the 1990s: these are not kept up to date and are not
recommended for new projects.

8 see Chapter 6 [The R API], page 126: note that these are not all part of the APIL.

Chapter 5: System and foreign language interfaces 105

file Rinternals.h in the directory R_INCLUDE_DIR (default R_HOME/include) that should be
available on any R installation.

A substantial amount of R, including the standard packages, is implemented using the func-
tions and macros described here, so the R source code provides a rich source of examples and
“how to do it”: do make use of the source code for inspirational examples.

It is necessary to know something about how R objects are handled in C code. All the R
objects you will deal with will be handled with the type SEXP?, which is a pointer to a structure
with typedef SEXPREC. Think of this structure as a wvariant type that can handle all the usual
types of R objects, that is vectors of various modes, functions, environments, language objects
and so on. The details are given later in this section and in Section “R Internal Structures” in
R Internals, but for most purposes the programmer does not need to know them. Think rather
of a model such as that used by Visual Basic, in which R objects are handed around in C code
(as they are in interpreted R code) as the variant type, and the appropriate part is extracted
for, for example, numerical calculations, only when it is needed. As in interpreted R code, much
use is made of coercion to force the variant object to the right type.

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory allocated for
R objects is not freed by the user; instead, the memory is from time to time garbage collected.
That is, some or all of the allocated memory not being used is freed or marked as re-usable.

The R object types are represented by a C structure defined by a typedef SEXPREC in
Rinternals.h. It contains several things among which are pointers to data blocks and to
other SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you are using the object by
using the PROTECT macro on a pointer to the object. This tells R that the object is in use so it
is not destroyed during garbage collection. Notice that it is the object which is protected, not
the pointer variable. It is a common mistake to believe that if you invoked PROTECT (p) at some
point then p is protected from then on, but that is not true once a new object is assigned to p.

Protecting an R object automatically protects all the R objects pointed to in the correspond-
ing SEXPREC, for example all elements of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to PROTECT. There is a
corresponding macro UNPROTECT that takes as argument an int giving the number of objects
to unprotect when they are no longer needed. The protection mechanism is stack-based, so
UNPROTECT (n) unprotects the last n objects which were protected. The calls to PROTECT and
UNPROTECT must balance when the user’s code returns. R will warn about "stack imbalance
in .Call" (or .External) if the housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code:

#include <R.h>
#include <Rinternals.h>

SEXP ab;

ab = PROTECT(allocVector (REALSXP, 2));
REAL(ab) [0] = 123.45;

REAL(ab) [1] = 67.89;

UNPROTECT (1) ;

Now, the reader may ask how the R object could possibly get removed during those manipu-
lations, as it is just our C code that is running. As it happens, we can do without the protection

9 SEXP is an acronym for Simple EXPression, common in LISP-like language syntaxes.

Chapter 5: System and foreign language interfaces 106

in this example, but in general we do not know (nor want to know) what is hiding behind the
R macros and functions we use, and any of them might cause memory to be allocated, hence
garbage collection and hence our object ab to be removed. It is usually wise to err on the side
of caution and assume that any of the R macros and functions might remove the object.

In some cases it is necessary to keep better track of whether protection is really needed. Be
particularly aware of situations where a large number of objects are generated. The pointer
protection stack has a fixed size (default 10,000) and can become full. It is not a good idea
then to just PROTECT everything in sight and UNPROTECT several thousand objects at the end. It
will almost invariably be possible to either assign the objects as part of another object (which
automatically protects them) or unprotect them immediately after use.

Protection is not needed for objects which R already knows are in use. In particular, this
applies to function arguments.

There is a less-used macro UNPROTECT_PTR (s) that unprotects the object pointed to by the
SEXP s, even if it is not the top item on the pointer protection stack. This is rarely needed
outside the parser (the R sources currently have three examples, one in src/main/plot3d.c).

Sometimes an object is changed (for example duplicated, coerced or grown) yet the current
value needs to be protected. For these cases PROTECT_WITH_INDEX saves an index of the pro-
tection location that can be used to replace the protected value using REPROTECT. For example
(from the internal code for optim)

PROTECT_INDEX ipx;

s = PROTECT_WITH_INDEX(eval(0S->R_fcall, 0S->R_env), &ipx);
s = REPROTECT (coerceVector (s, REALSXP), ipx);

Note that it is dangerous to mix UNPROTECT_PTR with PROTECT_WITH_INDEX, as the former
changes the protection locations of objects that were protected after the one being unprotected.

There is another way to avoid the affects of garbage collection: a call to R_PreserveObject
adds an object to an internal list of objects not to be collects, and a subsequent call to R_
ReleaseObject removes it from that list. This provides a way for objects which are not returned
as part of R objects to be protected across calls to compiled code: on the other hand it becomes
the user’s responsibility to release them when they are no longer needed (and this often requires
the use of a finalizer). It is less efficient that the normal protection mechanism, and should be
used sparingly.

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There are quite
a few allocXxx functions defined in Rinternals.h—you may want to explore them.

One that is commonly used is allocVector, the C-level equivalent of R-level vector () and its
wrappers such as integer () and character (). One distinction is that whereas the R functions
always initialize the elements of the vector, allocVector only does so for lists, expressions and
character vectors (the cases where the elements are themselves R objects).

If storage is required for C objects during the calculations this is best allocating by calling
R_alloc; see Section 6.1 [Memory allocation], page 126. All of these memory allocation routines
do their own error-checking, so the programmer may assume that they will raise an error and
not return if the memory cannot be allocated.

5.9.3 Detalils of R types

Users of the Rinternals.h macros will need to know how the R types are known internally. The
different R data types are represented in C by SEXPTYPE. Some of these are familiar from R
and some are internal data types. The usual R object modes are given in the table.

Chapter 5: System and foreign language interfaces 107

SEXPTYPE R equivalent

REALSXP numeric with storage mode double
INTSXP integer

CPLXSXP complex

LGLSXP logical

STRSXP character

VECSXP list (generic vector)
LISTSXP pairlist

DOTSXP a ‘... object

NILSXP NULL

SYMSXP name/symbol

CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP, PROMSXP, etc. (N.B.: although
it is possible to return objects of internal types, it is unsafe to do so as assumptions are made
about how they are handled which may be violated at user-level evaluation.) More details are
given in Section “R Internal Structures” in R Internals.

Unless you are very sure about the type of the arguments, the code should check the data
types. Sometimes it may also be necessary to check data types of objects created by evaluating
an R expression in the C code. You can use functions like isReal, isInteger and isString to
do type checking. See the header file Rinternals.h for definitions of other such functions. All
of these take a SEXP as argument and return 1 or 0 to indicate TRUFE or FALSE.

What happens if the SEXP is not of the correct type? Sometimes you have no other option
except to generate an error. You can use the function error for this. It is usually better to
coerce the object to the correct type. For example, if you find that an SEXP is of the type
INTEGER, but you need a REAL object, you can change the type by using

newSexp = PROTECT (coerceVector(oldSexp, REALSXP));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP is
still protected but now unused.'®

All the coercion functions do their own error-checking, and generate NAs with a warning or
stop with an error as appropriate.

Note that these coercion functions are not the same as calling as.numeric (and so on) in R
code, as they do not dispatch on the class of the object. Thus it is normally preferable to do
the coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C code, and how to extract
the numeric data from numeric R vectors. These can suffice to take us a long way in interfacing
R objects to numerical algorithms, but we may need to know a little more to create useful return
objects.

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and dimnames
that mark objects as matrices or arrays. It can also be helpful to work with the names attribute
of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer
and %o0% already do). As usual the R code is simple

out <- function(x, y)

{

10 1 no coercion was required, coerceVector would have passed the old object through unchanged.

Chapter 5: System and foreign language interfaces 108

storage.mode(x) <- storage.mode(y) <- "double"
.Call("out", x, y)
}

where we expect x and y to be numeric vectors (possibly integer), possibly with names. This
time we do the coercion in the calling R code.

C code to do the computations is

#include <R.h>
#include <Rinternals.h>

SEXP out (SEXP x, SEXP y)
{
int nx = length(x), ny = length(y);
SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));
double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);
for(int i = 0; i < nx; i++) {
double tmp = rx[i];
for(int j = 0; j < ny; j++)
rans[i + nx*j] = tmp * ry[j]l;
}
UNPROTECT (1) ;
return ans;

}

Note the way REAL is used: as it is a function call it can be considerably faster to store the result
and index that.

However, we would like to set the dimnames of the result. We can use

#include <R.h>
#include <Rinternals.h>

SEXP out (SEXP x, SEXP y)

{
int nx = length(x), ny = length(y);
SEXP ans = PROTECT(allocMatrix (REALSXP, nx, ny));
double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

for(int i = 0; i < nx; i++) {
double tmp = rx[i];
for(int j = 0; j < ny; j++)
rans[i + nx*j] = tmp * ry[j];

¥

SEXP dimnames = PROTECT(allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));
SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));
setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT(3) ;
return ans;
}
This example introduces several new features. The getAttrib and setAttrib functions get
and set individual attributes. Their second argument is a SEXP defining the name in the symbol

Chapter 5: System and foreign language interfaces 109

table of the attribute we want; these and many such symbols are defined in the header file
Rinternals.h.

There are shortcuts here too: the functions namesgets, dimgets and dimnamesgets are the
internal versions of the default methods of names<-, dim<- and dimnames<- (for vectors and
arrays), and there are functions such as GetMatrixDimnames and GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

SEXP version;

version = PROTECT(allocVector (REALSXP, 1));
REAL (version) [0] = 3.0;

setAttrib(ans, install("version"), version);
UNPROTECT (1) ;

Using install when it is not needed is harmless and provides a simple way to retrieve the
symbol from the symbol table if it is already installed. However, the lookup takes a non-trivial
amount of time, so consider code such as

static SEXP VerSymbol = NULL;

if (VerSymbol == NULL) VerSymbol = install("version");
if it is to be done frequently.
This example can be simplified by another convenience function:
SEXP version = PROTECT(ScalarReal(3.0));

setAttrib(ans, install("version"), version);
UNPROTECT (1) ;

5.9.5 Classes

In R the class is just the attribute named "class" so it can be handled as such, but there is a
shortcut classgets. Suppose we want to give the return value in our example the class "mat".
We can use

#include <R.h>
#include <Rinternals.h>

SEXP ans, dim, dimnames, class;

class = PROTECT(allocVector (STRSXP, 1));
SET_STRING_ELT(class, O, mkChar("mat"));
classgets(ans, class);

UNPROTECT (4) ;

return ans;

¥

As the value is a character vector, we have to know how to create that from a C character array,
which we do using the function mkChar.

5.9.6 Handling lists

Some care is needed with lists, as R moved early on from using LISP-like lists (now called
“pairlists”) to S-like generic vectors. As a result, the appropriate test for an object of mode
list is isNewList, and we need allocVector (VECSXP, n) and not allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic vector.
Suppose we have a list object

Chapter 5: System and foreign language interfaces 110

a<-1list(f =1, g=2, h = 3)
Then we can access a$g as a[[2]] by

double g;

g = REAL(VECTOR_ELT(a, 1))[0];

This can rapidly become tedious, and the following function (based on one in package stats)
is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement (SEXP list, const char *str)

{
SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);

for (int i = 0; i < length(list); i++)
if (strcmp (CHAR(STRING_ELT (names, i)), str) == 0) {
elmt = VECTOR_ELT(1list, i);
break;

return elmt;

}
and enables us to say

double g;
g = REAL(getListElement(a, "g"))[0];

5.9.7 Handling character data

R character vectors are stored as STRSXPs, a vector type like VECSXP where every element is
of type CHARSXP. The CHARSXP elements of STRSXPs are accessed using STRING_ELT and SET_
STRING_ELT.

CHARSXPs are read-only objects and must never be modified. In particular, the C-style string
contained in a CHARSXP should be treated as read-only and for this reason the CHAR function used
to access the character data of a CHARSXP returns (const char *) (this also allows compilers to
issue warnings about improper use). Since CHARSXPs are immutable, the same CHARSXP can be
shared by any STRSXP needing an element representing the same string. R maintains a global
cache of CHARSXPs so that there is only ever one CHARSXP representing a given string in memory.

You can obtain a CHARSXP by calling mkChar and providing a nul-terminated C-style string.
This function will return a pre-existing CHARSXP if one with a matching string already exists,
otherwise it will create a new one and add it to the cache before returning it to you. The variant
mkCharLen can be used to create a CHARSXP from part of a buffer and will ensure null-termination.

Note that R character strings are restricted to 2731 - 1 bytes, and hence so should the input
to mkChar be (C allows longer strings on 64-bit platforms).

5.9.8 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as arguments to
.Call or .External, but it is possible to find the values of R objects from within the C given
their names. The following code is the equivalent of get (name, envir = rho).

Chapter 5: System and foreign language interfaces 111

SEXP getvar (SEXP name, SEXP rho)
{
SEXP ans;

if('isString(name) || length(name) != 1)
error("name is not a single string");
if ('isEnvironment (rho))
error ("rho should be an environment");
ans = findVar(install (CHAR(STRING_ELT(name, 0))), rho);
Rprintf ("first value is %f\n", REAL(ans) [0]);
return R_NilValue;

}

The main work is done by findVar, but to use it we need to install name as a name in the
symbol table. As we wanted the value for internal use, we return NULL.

Similar functions with syntax

void defineVar (SEXP symbol, SEXP value, SEXP rho)
void setVar (SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. defineVar creates a new binding or changes the value
of an existing binding in the specified environment frame; it is the analogue of assign(symbol,
value, envir = rho, inherits = FALSE), but unlike assign, defineVar does not make a copy
of the object value.!' setVar searches for an existing binding for symbol in rho or its enclosing
environments. If a binding is found, its value is changed to value. Otherwise, a new binding with
the specified value is created in the global environment. This corresponds to assign(symbol,
value, envir = rho, inherits = TRUE).

5.9.9 Some convenience functions

Some operations are done so frequently that there are convenience functions to handle them.
(All these are provided via the header file Rinternals.h.)

Suppose we wanted to pass a single logical argument ignore_quotes: we could use

int ign = asLogical(ignore_quotes);

if (ign == NA_LOGICAL) error("’ignore_quotes’ must be TRUE or FALSE");
which will do any coercion needed (at least from a vector argument), and return NA_LOGICAL if
the value passed was NA or coercion failed. There are also asInteger, asReal and asComplex.
The function asChar returns a CHARSXP. All of these functions ignore any elements of an input
vector after the first.

To return a length-one real vector we can use
double x;

return ScalarReal (x);

and there are versions of this for all the atomic vector types (those for a length-one character
vector being ScalarString with argument a CHARSXP and mkString with argument const char
*).

Some of the isXXXX functions differ from their apparent R-level counterparts: for example
isVector is true for any atomic vector type (isVectorAtomic) and for lists and expressions
(isVectorList) (with no check on attributes). isMatrix is a test of a length-2 "dim" attribute.

' You can assign a copy of the object in the environment frame rho using defineVar(symbol,
duplicate(value), rho)).

Chapter 5: System and foreign language interfaces 112

There are a series of small macros/functions to help construct pairlists and language objects
(whose internal structures just differ by SEXPTYPE). Function CONS(u, v) is the basic building
block: it constructs a pairlist from u followed by v (which is a pairlist or R_NilValue). LCONS is
a variant that constructs a language object. Functions 1ist1 to 1ist5 construct a pairlist from
one to five items, and langl to lang6 do the same for a language object (a function to call plus
zero to five arguments). Functions elt and lastElt find the ith element and the last element
of a pairlist, and nthecdr returns a pointer to the nth position in the pairlist (whose CAR is the
nth item).

Functions str2type and type2str map R length-one character strings to and from SEXPTYPE
numbers, and type2char maps numbers to C character strings.

5.9.9.1 Semi-internal convenience functions

There is quite a collection of functions that may be used in your C code if you are willing to
adapt to rare “API” changes. These typically contain “workhorses” of their R counterparts.

Functions any_duplicated and any_duplicated3 are fast versions of R’s
any (duplicated(.)).

Function R_compute_identical corresponds to R’s identical function.

5.9.10 Named objects and copying

When assignments are done in R such as

x <- 1:10

y <- X
the named object is not necessarily copied, so after those two assignments y and x are bound to
the same SEXPREC (the structure a SEXP points to). This means that any code which alters one of
them has to make a copy before modifying the copy if the usual R semantics are to apply. Note
that whereas .C and .Fortran do copy their arguments (unless the dangerous dup = FALSE is
used), .Call and .External do not. So duplicate is commonly called on arguments to .Call
before modifying them.

However, at least some of this copying is unneeded. In the first assignment shown, x <- 1:10,
R first creates an object with value 1:10 and then assigns it to x but if x is modified no copy is
necessary as the temporary object with value 1:10 cannot be referred to again. R distinguishes
between named and unnamed objects via a field in a SEXPREC that can be accessed wia the
macros NAMED and SET_NAMED. This can take values

0 The object is not bound to any symbol
1 The object has been bound to exactly one symbol
2 The object has potentially been bound to two or more symbols, and one should act

as if another variable is currently bound to this value.

Note the past tenses: R does not do full reference counting and there may currently be fewer
bindings.

It is safe to modify the value of any SEXP for which NAMED (foo) is zero, and if NAMED (foo) is
two, the value should be duplicated (via a call to duplicate) before any modification. Note that
it is the responsibility of the author of the code making the modification to do the duplication,
even if it is x whose value is being modified after y <- x.

The case NAMED (foo) == 1 allows some optimization, but it can be ignored (and duplication
done whenever NAMED (foo) > 0). (This optimization is not currently usable in user code.) It is
intended for use within replacement functions. Suppose we used

x <= 1:10
foo(x) <- 3

Chapter 5: System and foreign language interfaces 113

which is computed as
x <= 1:10
x <- "foo<-"(x, 3)

Then inside "foo<-" the object pointing to the current value of x will have NAMED (foo) as one
and it would be safe to modify it as the only symbol bound to it is x and that will be rebound
immediately. (Provided the remaining code in "foo<-" make no reference to x, and no one is
going to attempt a direct call such as y <= "foo<-"(x).)

This mechanism is likely to be replaced in future versions of R.

5.10 Interface functions .Call and .External
In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is based on the interface of
the same name in S version 4, and .External is based on R’s .Internal. .External is more
complex but allows a variable number of arguments.

5.10.1 Calling .Call
Let us convert our finite convolution example to use .Call. The calling function in R is
conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type coercion is transferred to the C
code, which is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
{
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT (coerceVector (b, REALSXP));
na = length(a); nb = length(b); nab = na + nb - 1;
ab = PROTECT(allocVector (REALSXP, nab));
xa = REAL(a); xb = REAL(b); xab = REAL(ab);
for(int i = 0; i < nab; i++) xab[i] = 0.0;
for(int i = 0; i < na; i++)
for(int j = 0; j < nb; j++) xabl[i + j]l += xali] * xb[j];
UNPROTECT (3) ;
return ab;

¥

5.10.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by replacing
.Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single SEXP.
The only change to the C code is how we handle the arguments.

Chapter 5: System and foreign language interfaces 114

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)

{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP a, b, ab;
a = PROTECT (coerceVector (CADR(args), REALSXP));
b = PROTECT (coerceVector (CADDR(args), REALSXP));
}

Once again we do not need to protect the arguments, as in the R side of the interface they are
objects that are already in use. The macros

first = CADR(args);

second = CADDR(args);
third = CADDDR(args);
fourth = CAD4R(args);

provide convenient ways to access the first four arguments. More generally we can use the CDR
and CAR macros as in

args
args

CDR(args); a = CAR(args);
CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a limit,
albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a variable
number of arguments, as length(args) will give the number of arguments supplied (of which
the first is ignored). We may need to know the names (‘tags’) given to the actual arguments,
which we can by using the TAG macro and using something like the following example, that
prints the names and the first value of its arguments if they are vector types.

SEXP showArgs (SEXP args)
{
args = CDR(args); /* skip ’name’ */
for(int i = 0; args != R_NilValue; i++, args = CDR(args)) {
const char *name =
isNull(TAG(args)) 7 "" : CHAR(PRINTNAME(TAG(args)));
SEXP el = CAR(args);
if (length(el) == 0) {
Rprintf ("[%d] ’%s’ R type, length O\n", i+l, name);
continue;
}
switch(TYPEQOF (el)) {
case REALSXP:
Rprintf ("[%d] ’%s’ %f\n", i+1, name, REAL(el) [0]);
break;
case LGLSXP:
case INTSXP:
Rprintf (" [%d] ’%s’ %d\n", i+1, name, INTEGER(el) [0]);
break;

Chapter 5: System and foreign language interfaces 115

case CPLXSXP:
{
Rcomplex cpl = COMPLEX(el) [0];
Rprintf (" [%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);

break;
case STRSXP:
Rprintf (" [%kd] ’%s’ %s\n", i+1, name,
CHAR(STRING_ELT(el, 0)));
break;
default:
Rprintf ("[%d] ’%s’ R type\n", i+1, name);
}
}
return R_NilValue;

}
This can be called by the wrapper function
showArgs <- function(...) invisible(.External("showArgs", ...))
Note that this style of programming is convenient but not necessary, as an alternative style is
showArgsl <- function(...) invisible(.Call("showArgsl", 1list(...)))

The (very similar) C code is in the scripts.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing (NA)
and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With the .Call
interface these will be passed to our code. In this example the special values are no problem, as
IEC60559 arithmetic will handle them correctly. In the current implementation this is also true
of NA as it is a type of NaN, but it is unwise to rely on such details. Thus we will re-write the
code to handle NAs using macros defined in R_exts/Arith.h included by R.h.

The code changes are the same in any of the versions of convolve2 or convolveE:

for(int i = 0; i < na; i++)
for(int j = 0; j < nb; j++)
if (ISNA(xal[il) || ISNA(xb[jl) || ISNA(xab[i + j1))
xab[i + j] = NA_REAL;
else
xab[i + j] += xalil * xb[j];

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA) and
R_FINITE (which is false for NA and all the special values), only apply to numeric values of type
double. Missingness of integers, logicals and character strings can be tested by equality to the
constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL can be used to set
elements of R vectors to NA.

The constants R_NaN, R_PosInf and R_NegInf can be used to set doubles to the special
values.

5.11 Evaluating R expressions from C

The main function we will use is

Chapter 5: System and foreign language interfaces 116

SEXP eval (SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval (expr, envir = rho) (so rho must be an environ-
ment), although we can also make use of findVar, defineVar and findFun (which restricts the
search to functions).

To see how this might be applied, here is a simplified internal version of lapply for expres-
sions, used as
a <- list(a = 1:5, b = rnorm(10), test = runif(100))
.Call("lapply", a, quote(sum(x)), new.env())

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)
{

int n = length(list);

SEXP ans;

if(!isNewList(1list)) error("’list’ must be a list");
if ('isEnvironment (rho)) error("’rho’ should be an environment");
ans = PROTECT(allocVector (VECSXP, n));
for(int 1 = 0; i < n; i++) {
defineVar(install("x"), VECTOR_ELT(list, i), rho);
SET_VECTOR_ELT(ans, i, eval(expr, rho));
}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT (1) ;
return ans;

}

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in src/main/optimize.c.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)
{

int n = length(list);

SEXP R_fcall, ans;

if(!isNewList(1list)) error("’list’ must be a list");
if ('isFunction(fn)) error("’fn’ must be a function");
if (!isEnvironment (rho)) error("’rho’ should be an environment");
R_fcall = PROTECT(lang2(fn, R_NilValue));
ans = PROTECT (allocVector (VECSXP, n));
for(int i = 0; i < n; i++) {
SETCADR(R_fcall, VECTOR_ELT(list, i));
SET_VECTOR_ELT(ans, i, eval(R_fcall, rho));

}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT(2) ;
return ans;
}
used by

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable pairlist of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

Chapter 5: System and foreign language interfaces 117

As a more comprehensive example of constructing an R call in C code and evaluating, consider
the following fragment of printAttributes in src/main/print.c.

/* Need to construct a call to
print (CAR(a), digits=digits)
based on the R_print structure, then eval(call, env).
See do_docall for the template for this sort of thing.
*/
SEXP s, t;
t = s = PROTECT(allocList(3));
SET_TYPEOF (s, LANGSXP);
SETCAR(t, install("print")); t = CDR(t);
SETCAR(t, CAR(a)); t = CDR(%t);
SETCAR(t, ScalarInteger(digits));
SET_TAG(t, install("digits"));
eval(s, env);
UNPROTECT(1) ;

At this point CAR(a) is the R object to be printed, the current attribute. There are three steps:
the call is constructed as a pairlist of length 3, the list is filled in, and the expression represented
by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only user-visible form of list in R. A
pairlist is a linked list (with CDR(t) computing the next entry), with items (accessed by CAR(t))
and names or tags (set by SET_TAG). In this call there are to be three items, a symbol (pointing
to the function to be called) and two argument values, the first unnamed and the second named.
Setting the type to LANGSXP makes this a call which can be evaluated.

5.11.1 Zero-finding

In this section we re-work the example of Becker, Chambers & Wilks (1988, pp.~205-10) on
finding a zero of a univariate function. The R code and an example are

zero <- function(f, guesses, tol = le-7) {
f.check <- function(x) {

x <- £f(x)

if (!is.numeric(x)) stop("Need a numeric result")

as.double (x)

}
.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())

}

cubel <- function(x) (x"2 + 1) * (x - 1.5)
zero(cubel, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is

SEXP mkans (double x)
{
SEXP ans;
ans = PROTECT (allocVector (REALSXP, 1));
REAL (ans) [0] = x;
UNPROTECT (1) ;
return ans;

Chapter 5: System and foreign language interfaces 118

double feval(double x, SEXP f, SEXP rho)

{
defineVar(install("x"), mkans(x), rho);
return REAL(eval(f, rho)) [0];

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)

{
double x0 = REAL(guesses) [0], x1 = REAL(guesses) [1],
tol = REAL(stol) [0];
double f0, f1, fc, xc;

if(tol <= 0.0) error("non-positive tol value");

f0 = feval(x0, f, rho); f1 = feval(xl, f, rho);

if (f0 == 0.0) return mkans(x0);

if(f1 == 0.0) return mkans(x1);

if (f0*f1 > 0.0) error("x[0] and x[1] have the same sign");

for(;;) {
xc = 0.5*%(x0+x1);
if (fabs(x0-x1) < tol) return mkans(xc);
fc = feval(xc, f, rho);

if(fc == 0) return mkans(xc);
if (fOxfc > 0.0) {
x0 = xc; fO = fc;
} else {
x1 = xc; f1 = fc;
}
}
}

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation and
.External. This calculates numerical derivatives, something that could be done as effectively
in interpreted R code but may be needed as part of a larger C calculation.

An interpreted R version and an example are

Chapter 5: System and foreign language interfaces 119

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))
{
eps <- sqrt(.Machine$double.eps)
ans <- eval(substitute(expr), rho)
grad <- matrix(, length(ans), length(theta),
dimnames=1ist (NULL, theta))
for (i in seq_along(theta)) {
old <- get(thetali], envir=rho)
delta <- eps * max(1l, abs(old))
assign(thetali], old+delta, envir=rho)
ansl <- eval(substitute(expr), rho)
assign(thetali], old, envir=rho)
grad[, i] <- (ansl - ans)/delta
}
attr(ans, "gradient") <- grad
ans
}
omega <- 1:5; x <= 1; y <= 2
numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the environment
to be used.

For the compiled version the call from R will be
.External ("numeric_deriv", expr, theta, rho)
with example usage

.External ("numeric_deriv", quote(sin(omega*x*y)),
c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated in the caller.
Here is the complete C code which we will explain section by section.

#include <R.h> /* for DOUBLE_EPS x*/
#include <Rinternals.h>

SEXP numeric_deriv(SEXP args)

{
SEXP theta, expr, rho, ans, ansl, gradient, par, dimnames;
double tt, xx, delta, eps = sqrt(DOUBLE_EPS), *rgr, *rans;
int i, start;

expr = CADR(args);

if (!isString(theta = CADDR(args)))
error("theta should be of type character");

if (!isEnvironment (rho = CADDDR(args)))
error("rho should be an environment");

ans = PROTECT (coerceVector (eval (expr, rho), REALSXP));
gradient = PROTECT(allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));
rgr = REAL(gradient); rans = REAL(ans);

Chapter 5: System and foreign language interfaces 120

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
par = PROTECT(findVar (install (CHAR(STRING_ELT(theta, i))), rho));
tt = REAL(par) [0];
xx = fabs(tt);
delta = (xx < 1) 7 eps : xXx*eps;
REAL(par) [0] += delta;
ansl = PROTECT(coerceVector(eval(expr, rho), REALSXP));
for(int j = 0; j < LENGTH(ans); j++)
rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
REAL (par) [0] = tt;
UNPROTECT(2); /* par, ansl */
}

dimnames = PROTECT (allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(3); /* ans gradient dimnames */
return ans;

}
The code to handle the arguments is

expr = CADR(args);

if (!isString(theta = CADDR(args)))
error ("theta should be of type character");

if (!isEnvironment (rho = CADDDR(args)))
error("rho should be an environment");

Note that we check for correct types of theta and rho but do not check the type of expr. That
is because eval can handle many types of R objects other than EXPRSXP. There is no useful
coercion we can do, so we stop with an error message if the arguments are not of the correct
mode.

The first step in the code is to evaluate the expression in the environment rho, by
ans = PROTECT (coerceVector (eval(expr, rho), REALSXP));
We then allocate space for the calculated derivative by
gradient = PROTECT(allocMatrix (REALSXP, LENGTH(ans), LENGTH(theta)));

The first argument to allocMatrix gives the SEXPTYPE of the matrix: here we want it to be
REALSXP. The other two arguments are the numbers of rows and columns. (Note that LENGTH
is intended to be used for vectors: length is more generally applicable.)

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
par = PROTECT(findVar (install (CHAR(STRING_ELT(theta, i))), rho));

Here, we are entering a for loop. We loop through each of the variables. In the for loop, we
first create a symbol corresponding to the i’th element of the STRSXP theta. Here, STRING_
ELT(theta, i) accesses the i’th element of the STRSXP theta. Macro CHAR() extracts the
actual character representation'? of it: it returns a pointer. We then install the name and use
findVar to find its value.

12 gee Section 5.15 [Character encoding issues|, page 125 for why this might not be what is required.

Chapter 5: System and foreign language interfaces 121

tt = REAL(par) [0];

xx = fabs(tt);

delta = (xx < 1) 7 eps : Xx*eps;

REAL (par) [0] += delta;

ansl = PROTECT(coerceVector(eval(expr, rho), REALSXP));

We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par (in
environment rho) by delta and evaluate expr in environment rho again. Because we are directly
dealing with original R memory locations here, R does the evaluation for the changed parameter
value.

for(int j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
REAL (par) [0] = tt;
UNPROTECT (2) ;

}

Now, we compute the i’th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like FORTRAN).

dimnames = PROTECT(allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT (3) ;

return ans;

First we add column names to the gradient matrix. This is done by allocating a list (a VECSXP)
whose first element, the row names, is NULL (the default) and the second element, the col-
umn names, is set as theta. This list is then assigned as the attribute having the symbol
R_DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of ans, unpro-
tect the remaining protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension want to accept an R expression from the user and evaluate it. The
previous section covered evaluation, but the expression will be entered as text and needs to be
parsed first. A small part of R’s parse interface is declared in header file R_ext/Parse.h'®.

An example of the usage can be found in the (example) Windows package windlgs included
in the R source tree. The essential part is

13 This is only guaranteed to show the current interface: it is liable to change.

Chapter 5: System and foreign language interfaces 122

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Parse.h>

SEXP menu_ttest3()

{
char cmd[256];
SEXP cmdSexp, cmdexpr, ans = R_NilValue;
ParseStatus status;

if(done == 1) {
cmdSexp = PROTECT(allocVector (STRSXP, 1));
SET_STRING_ELT (cmdSexp, 0, mkChar(cmd));
cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));
if (status !'= PARSE_OK) {

UNPROTECT (2) ;

error ("invalid call %s", cmd);
+
/* Loop is needed here as EXPSEXP will be of length > 1 */
for(int i = 0; i < length(cmdexpr); i++)

ans = eval (VECTOR_ELT (cmdexpr, i), R_GlobalEnv);
UNPROTECT (2) ;

}

return ans;

}
Note that a single line of text may give rise to more than one R expression.

R_ParseVector is essentially the code used to implement parse (text=) at R level. The first
argument is a character vector (corresponding to text) and the second the maximal number
of expressions to parse (corresponding to n). The third argument is a pointer to a variable of
an enumeration type, and it is normal (as parse does) to regard all values other than PARSE_
OK as an error. Other values which might be returned are PARSE_INCOMPLETE (an incomplete
expression was found) and PARSE_ERROR (a syntax error), in both cases the value returned being
R_NilValue. The fourth argument is a length one character vector to be used as a filename in
error messages, a srcfile object or the R NULL object (as in the example above). If a srcfile
object was used, a srcref attribute would be attached to the result, containing a list of srcref
objects of the same length as the expression, to allow it to be echoed with its original formatting.

5.12.1 Accessing source references

The source references added by the parser are recorded by R’s evaluator as it evaluates code.
Two functions make these available to debuggers running C code:

SEXP R_GetCurrentSrcref (int skip);

This function checks R_Srcref and the current evaluation stack for entries that contain
source reference information. The skip argument tells how many source references to skip
before returning the SEXP of the srcref object, counting from the top of the stack. If skip <
0, abs(skip) locations are counted up from the bottom of the stack. If too few or no source
references are found, NULL is returned.

SEXP R_GetSrcFilename (SEXP srcref);

This function extracts the filename from the source reference for display, returning a length
1 character vector containing the filename. If no name is found, "" is returned.

Chapter 5: System and foreign language interfaces 123

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be encountered at R level, but are created in
C code.

External pointer SEXPs are intended to handle references to C structures such as ‘handles’,
and are used for this purpose in package RODBC for example. They are unusual in their copying
semantics in that when an R object is copied, the external pointer object is not duplicated. (For
this reason external pointers should only be used as part of an object with normal semantics,
for example an attribute or an element of a list.)

An external pointer is created by
SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a function pointer), and tag and prot
are references to ordinary R objects which will remain in existence (be protected from garbage
collection) for the lifetime of the external pointer object. A useful convention is to use the tag
field for some form of type identification and the prot field for protecting the memory that the
external pointer represents, if that memory is allocated from the R heap. Both tag and prot
can be R_NilValue, and often are.

The elements of an external pointer can be accessed and set via

void *R_ExternalPtrAddr (SEXP s);

SEXP R_ExternalPtrTag(SEXP s);

SEXP R_ExternalPtrProtected(SEXP s);

void R_ClearExternalPtr(SEXP s);

void R_SetExternalPtrAddr(SEXP s, void *p);
void R_SetExternalPtrTag(SEXP s, SEXP tag);
void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.

An external pointer object can have a finalizer, a piece of code to be run when the object is
garbage collected. This can be R code or C code, and the various interfaces are, respectively.

void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t) (SEXP);
void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

The R function indicated by fun should be a function of a single argument, the object to be
finalized. R does not perform a garbage collection when shutting down, and the onexit argument
of the extended forms can be used to ask that the finalizer be run during a normal shutdown of
the R session. It is suggested that it is good practice to clear the pointer on finalization.

The only R level function for interacting with external pointers is reg.finalizer which can
be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be saved and then reloaded,
but if this happens the pointer will be set to the C NULL pointer.

Finalizers can be run at many places in the code base and much of it, including the R
interpreter, is not re-entrant. So great care is needed in choosing the code to be run in a
finalizer. As from R 3.0.3 finalizers are marked to be run at garbage collection but only run at
a somewhat safe point thereafter.

Weak references are used to allow the programmer to maintain information on entities without
preventing the garbage collection of the entities once they become unreachable.

A weak reference contains a key and a value. The value is reachable is if it either reachable
directly or via weak references with reachable keys. Once a value is determined to be unreachable

http://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 124

during garbage collection, the key and value are set to R_NilValue and the finalizer will be run
later in the garbage collection.

Weak reference objects are created by one of

SEXP R_MakeWeakRef (SEXP key, SEXP val, SEXP fin, Rboolean onexit);
SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,
Rboolean onexit);

where the R or C finalizer are specified in exactly the same way as for an external pointer object
(whose finalization interface is implemented via weak references).

The parts can be accessed via

SEXP R_WeakRefKey (SEXP w) ;
SEXP R_WeakRefValue (SEXP w);
void R_RunWeakRefFinalizer (SEXP w);

A toy example of the use of weak references can be found at www.stat.uiowa.edu/ luke/
R/references/weakfinex.html, but that is used to add finalizers to external pointers which
can now be done more directly. At the time of writing no CRAN or Bioconductor package uses
weak references.

5.13.1 An example

Package RODBC uses external pointers to maintain its channels, connections to databases.
There can be several connections open at once, and the status information for each is stored in
a C structure (pointed to by this_handle) in the code extract below) that is returned wvia an
external pointer as part of the RODBC ‘channel’ (as the "handle_ptr" attribute). The external
pointer is created by

SEXP ans, ptr;

ans = PROTECT (allocVector (INTSXP, 1));

ptr = R_MakeExternalPtr(thisHandle, install("RODBC_channel"), R_NilValue);
PROTECT (ptzr) ;

R_RegisterCFinalizerEx(ptr, chanFinalizer, TRUE);

/* return the channel no */

INTEGER(ans) [0] = nChannels;

/* and the connection string as an attribute */

setAttrib(ans, install("connection.string"), constr);

setAttrib(ans, install("handle_ptr"), ptr);

UNPROTECT(3) ;

return ans;
Note the symbol given to identify the usage of the external pointer, and the use of the finalizer.
Since the final argument when registering the finalizer is TRUE, the finalizer will be run at the
the of the R session (unless it crashes). This is used to close and clean up the connection to the
database. The finalizer code is simply

static void chanFinalizer (SEXP ptr)

{
if (!R_ExternalPtrAddr(ptr)) return;
inRODBCClose (R_ExternalPtrAddr(ptr));
R_ClearExternalPtr(ptr); /* not really needed */
}

Clearing the pointer and checking for a NULL pointer avoids any possibility of attempting to
close an already-closed channel.

R’s connections provide another example of using external pointers, in that case purely to
be able to use a finalizer to close and destroy the connection if it is no longer is use.

http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 125

5.14 Vector accessor functions

The vector accessors like REAL and INTEGER and VECTOR_ELT are functions when used in R
extensions. (For efficiency they are macros when used in the R source code, apart from SET_
STRING_ELT and SET_VECTOR_ELT which are always functions.)

The accessor functions check that they are being used on an appropriate type of SEXP.

If efficiency is essential, the macro versions of the accessors can be obtained by defining
‘USE_RINTERNALS’ before including Rinternals.h. If you find it necessary to do so, please do
test that your code compiles without ‘USE_RINTERNALS’ defined, as this provides a stricter test
that the accessors have been used correctly.

5.15 Character encoding issues

CHARSXPs can be marked as coming from a known encoding (Latin-1 or UTF-8). This is mainly
intended for human-readable output, and most packages can just treat such CHARSXPs as a
whole. However, if they need to be interpreted as characters or output at C level then it would
normally be correct to ensure that they are converted to the encoding of the current locale: this
can be done by accessing the data in the CHARSXP by translateChar rather than by CHAR. If
re-encoding is needed this allocates memory with R_alloc which thus persists to the end of the
.Call/.External call unless vmaxset is used (see Section 6.1.1 [Transient storage allocation],
page 126).

There is a similar function translateCharUTF8 which converts to UTF-8: this has the ad-
vantage that a faithful translation is almost always possible (whereas only a few languages can
be represented in the encoding of the current locale unless that is UTF-8).

There is a public interface to the encoding marked on CHARXSXPs wia

typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_SYMBOL, CE_ANY} cetype_t;

cetype_t getCharCE(SEXP);

SEXP mkCharCE(const char *, cetype_t);
Only CE_UTF8 and CE_LATIN1 are marked on CHARSXPs (and so Rf _getCharCE will only return
one of the first three), and these should only be used on non-ASCII strings. Value CE_SYMBOL is
used internally to indicate Adobe Symbol encoding. Value CE_ANY is used to indicate a character
string that will not need re-encoding — this is used for character strings known to be in ASCII,
and can also be used as an input parameter where the intention is that the string is treated as
a series of bytes. (See the comments under mkChar about the length of input allowed.)

Function

const char *reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,
int subst);

can be used to re-encode character strings: like translateChar it returns a string allocated by
R_alloc. This can translate from CE_SYMBOL to CE_UTF8, but not conversely. Argument subst
controls what to do with untranslatable characters or invalid input: this is done byte-by-byte
with 1 indicates to output hex of the form <a0>, and 2 to replace by ., with any other value
causing the byte to produce no output.
There is also
SEXP mkCharLenCE(const char *, size_t, cetype_t);

to create marked character strings of a given length.

Chapter 6: The R APIL: entry points for C code 126

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that can be called from C
code (and some that can be called from FORTRAN code). Only those documented here are
stable enough that they will only be changed with considerable notice.

The recommended procedure to use these is to include the header file R.h in your C code by
#include <R.h>

This will include several other header files from the directory R_INCLUDE_DIR/R_ext, and there
are other header files there that can be included too, but many of the features they contain
should be regarded as undocumented and unstable.

An alternative is to include the header file S.h, which may be useful when porting code from
S. This includes rather less than R.h, and has some extra compatibility definitions (for example
the S_complex type from S).

The defines used for compatibility with S sometimes causes conflicts (notably with Windows
headers), and the known problematic defines can be removed by defining STRICT_R_HEADERS.

Most of these header files, including all those included by R.h, can be used from C++ code.
Some others need to be included within an extern "C" declaration, and for clarity this is ad-
visable for all R header files.

Note: Because R re-maps many of its external names to avoid clashes with user
code, it is essential to include the appropriate header files when using these entry
points.

This remapping can cause problems', and can be eliminated by defining R_NO_REMAP and
prepending ‘Rf_’ to all the function names used from Rinternals.h and R_ext/Error.h. These
problems can usually be avoided by including other headers (such as system headers and those
for external software used by the package) before R.h.

We can classify the entry points as

API Entry points which are documented in this manual and declared in an installed
header file. These can be used in distributed packages and will only be changed
after deprecation.

public Entry points declared in an installed header file that are exported on all R platforms
but are not documented and subject to change without notice.

private Entry points that are used when building R and exported on all R platforms but
are not declared in the installed header files. Do not use these in distributed code.

hidden Entry points that are where possible (Windows and some modern Unix-alike com-
pilers/loaders when using R as a shared library) not exported.

6.1 Memory allocation
There are two types of memory allocation available to the C programmer, one in which R
manages the clean-up and the other in which user has full control (and responsibility).
6.1.1 Transient storage allocation
Here R will reclaim the memory at the end of the call to .C, .Call or .External. Use
char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage (from package stats) is

! Known problems are redefining LENGTH, error, length, vector and warning

Chapter 6: The R APIL: entry points for C code 127

x = (int *) R_alloc(nrows(merge)+2, sizeof (int));
(size_t is defined in stddef.h which the header defining R_alloc includes.)

There is a similar call, S_alloc (for compatibility with older versions of S) which zeroes the
memory allocated,

char *S_alloc(long n, int size)
and
char *S_realloc(char *p, long new, long old, int size)
which changes the allocation size from old to new units, and zeroes the additional units.

For compatibility with current versions of S, header S.h (only) defines wrapper macros equiv-
alent to

typex Salloc(long n, int type)
type* Srealloc(char *p, long new, long old, int type)

This memory is taken from the heap, and released at the end of the .C, .Call or .External
call. Users can also manage it, by noting the current position with a call to vmaxget and
subsequently clearing memory allocated by a call to vmaxset. An example might be

void *vmax = vmaxget ()
// a loop involving the use of R_alloc at each iteration
vmaxset (vmax)

This is only recommended for experts.

Note that this memory will be freed on error or user interrupt (if allowed: see Section 6.12
[Allowing interrupts|, page 139).

Note that although n is size_t, there may be limits imposed by R’s internal allocation
mechanism. These will only come into play on 64-bit systems, where the limit for n prior to R
3.0.0 was just under 16Gb.

These functions should only be used in code called by .C etc, never from front-ends. They
are not thread-safe.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc, the interface providing R error
handling. This memory lasts until freed by the user and is additional to the memory allocated
for the R workspace.

The interface functions are
typex Calloc(size_t n, type)
type*x Realloc(any *p, size_t n, type)
void Free(any *p)
providing analogues of calloc, realloc and free. If there is an error during allocation it is

handled by R, so if these routines return the memory has been successfully allocated or freed.
Free will set the pointer p to NULL. (Some but not all versions of S do so.)

Users should arrange to Free this memory when no longer needed, including on error or user
interrupt. This can often be done most conveniently from an on.exit action in the calling R
function — see pwilcox for an example.

Do not assume that memory allocated by Calloc/Realloc comes from the same pool as used
by malloc: in particular do not use free or strdup with it.

These entry points need to be prefixed by R_ if STRICT_R_HEADERS has been defined.

Chapter 6: The R APIL: entry points for C code 128

6.2 Error handling

The basic error handling routines are the equivalents of stop and warning in R code, and use
the same interface.

void error(const char * format, ...);
void warning(const char * format, ...);

These have the same call sequences as calls to printf, but in the simplest case can be called
with a single character string argument giving the error message. (Don’t do this if the string
contains ‘%’ or might otherwise be interpreted as a format.)

If STRICT_R_HEADERS is not defined there is also an S-compatibility interface which uses calls
of the form

PROBLEM ERROR
MESSAGE WARN
PROBLEM RECOVER (NULL_ENTRY)
MESSAGE WARNING (NULL_ENTRY)
the last two being the forms available in all S versions. Here ‘.. " is a set of arguments to

printf, so can be a string or a format string followed by arguments separated by commas.

6.2.1 Error handling from FORTRAN

There are two interface function provided to call error and warning from FORTRAN code, in
each case with a simple character string argument. They are defined as

subroutine rexit(message)
subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning,.

6.3 Random number generation
The interface to R’s internal random number generation routines is

double unif_rand();
double norm_rand();
double exp_rand();

giving one uniform, normal or exponential pseudo-random variate. However, before these are
used, the user must call

GetRNGstate();
and after all the required variates have been generated, call
PutRNGstate();
These essentially read in (or create) .Random.seed and write it out after use.

File S.h defines seed_in and seed_out for S-compatibility rather than GetRNGstate and
PutRNGstate. These take a long * argument which is ignored.

The random number generator is private to R; there is no way to select the kind of RNG or
set the seed except by evaluating calls to the R functions.

The C code behind R’s rxxx functions can be accessed by including the header file Rmath.h;
See Section 6.7.1 [Distribution functions|, page 131. Those calls generate a single variate and
should also be enclosed in calls to GetRNGstate and PutRNGstate.

Chapter 6: The R APIL: entry points for C code 129

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf, -Inf and NaN. These functions are accessed
VLG MAacros:

ISNA(x) True for R’s NA only
ISNAN (x) True for R’s NA and TEEE NaN
R_FINITE(x) False for Inf, -Inf, NA, NaN

and via function R_IsNaN which is true for NaN but not NA.

Do use R_FINITE rather than isfinite or finite; the latter is often mendacious and
isfinite is only available on a some platforms, on which R_FINITE is a macro expanding
to isfinite.

Currently in C code ISNAN is a macro calling isnan. (Since this gives problems on some C++
systems, if the R headers is called from C++ code a function call is used.)

You can check for Inf or -Inf by testing equality to R_PosInf or R_NegInf, and set (but
not test) an NA as NA_REAL.

All of the above apply to double variables only. For integer variables there is a variable
accessed by the macro NA_INTEGER which can used to set or test for missingness.

6.5 Printing

The most useful function for printing from a C routine compiled into R is Rprintf. This is used
in exactly the same way as printf, but is guaranteed to write to R’s output (which might be
a GUI console rather than a file, and can be re-directed by sink). It is wise to write complete
lines (including the "\n") before returning to R. It is defined in R_ext/Print.h.

The function REprintf is similar but writes on the error stream (stderr) which may or may
not be different from the standard output stream.

Functions Rvprintf and REvprintf are analogues using the vprintf interface. Because
that is a C99 interface, they are only defined by R_ext/Print.h in C++ code if the macro
R_USE_C99_IN_CXX is defined when it is included.

Another circumstance when it may be important to use these functions is when using parallel
computation on a cluster of computational nodes, as their output will be re-directed/logged
appropriately.

6.5.1 Printing from FORTRAN

On many systems FORTRAN write and print statements can be used, but the output may
not interleave well with that of C, and will be invisible on GUI interfaces. They are not portable
and best avoided.

Three subroutines are provided to ease the output of information from FORTRAN code.

subroutine dblepr(label, nchar, data, ndata)
subroutine realpr(label, nchar, data, ndata)
subroutine intpr (label, nchar, data, ndata)

Here label is a character label of up to 255 characters, nchar is its length (which can be -1 if the
whole label is to be used), and data is an array of length at least ndata of the appropriate type
(double precision, real and integer respectively). These routines print the label on one line
and then print data as if it were an R vector on subsequent line(s). They work with zero ndata,
and so can be used to print a label alone.

Chapter 6: The R APIL: entry points for C code 130

6.6 Calling C from FORTRAN and vice versa

Naming conventions for symbols generated by FORTRAN differ by platform: it is not safe to
assume that FORTRAN names appear to C with a trailing underscore. To help cover up the
platform-specific differences there is a set of macros that should be used.

F77_SUB(name)
to define a function in C to be called from FORTRAN

F77_NAME (name)
to declare a FORTRAN routine in C before use

F77_CALL (name)
to call a FORTRAN routine from C

F77_COMDECL (name)
to declare a FORTRAN common block in C

F77_COM(name)
to access a FORTRAN common block from C

On most current platforms these are all the same, but it is unwise to rely on this. Note that
names with underscores are not legal in FORTRAN 77, and are not portably handled by the
above macros. (Also, all FORTRAN names for use by R are lower case, but this is not enforced
by the macros.)

For example, suppose we want to call R’s normal random numbers from FORTRAN. We
need a C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart) (void) { GetRNGstate(); }
void F77_SUB(rndend) (void) { PutRNGstate(); }
double F77_SUB(normrnd) (void) { return norm_rand(); }

to be called from FORTRAN as in

subroutine testit()

double precision normrnd, x
call rndstart()

x = normrnd ()

call dblepr("X was", 5, x, 1)
call rndend()

end

Note that this is not guaranteed to be portable, for the return conventions might not be com-
patible between the C and FORTRAN compilers used. (Passing values via arguments is safer.)

The standard packages, for example stats, are a rich source of further examples.

Passing character strings from C to FORTRAN 77 or wice versa is not portable (and to
Fortran 90 or later is even less so). We have found that it helps to ensure that a C string to
be passed is followed by several nuls (and not just the one needed as a C terminator). But for
maximal portability character strings in FORTRAN should be avoided.

6.7 Numerical analysis subroutines
R contains a large number of mathematical functions for its own use, for example numerical
linear algebra computations and special functions.

The header files R_ext/BLAS.h, R_ext/Lapack.h and R_ext/Linpack.h contains declara-
tions of the BLAS, LAPACK and LINPACK linear algebra functions included in R. These are

Chapter 6: The R APIL: entry points for C code 131

expressed as calls to FORTRAN subroutines, and they will also be usable from users’ FOR-
TRAN code. Although not part of the official API, this set of subroutines is unlikely to change
(but might be supplemented).

The header file Rmath.h lists many other functions that are available and documented in the
following subsections. Many of these are C interfaces to the code behind R functions, so the R
function documentation may give further details.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution functions and quantile functions
for the standard statistical distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the normal distribution:

double dnorm(double x, double mu, double sigma, int give_log) ;
double pnorm(double x, double mu, double sigma, int lower_tail,
int give_log);
double gnorm(double p, double mu, double sigma, int lower_tail,
int log_p);
double rnorm(double mu, double sigma);
That is, the first argument gives the position for the density and CDF and probability for the
quantile function, followed by the distribution’s parameters. Argument lower_tail should be
TRUE (or 1) for normal use, but can be FALSE (or 0) if the probability of the upper tail is desired
or specified.

Finally, give_log should be non-zero if the result is required on log scale, and log_p should
be non-zero if p has been specified on log scale.

Note that you directly get the cumulative (or “integrated”) hazard function, H(t) = —log(1—
F(t)), by using

- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)

or shorter (and more cryptic) - pdist(t, ..., 0, 1).

The random-variate generation routine rnorm returns one normal variate. See Section 6.3
[Random numbers]|, page 128, for the protocol in using the random-variate routines.

Note that these argument sequences are (apart from the names and that rnorm has no n)
mainly the same as the corresponding R functions of the same name, so the documentation of the
R functions can be used. Note that the exponential and gamma distributions are parametrized
by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed by ‘d’, ‘p’, ‘q’ or ‘r’

apart from the exceptions noted) and distribution-specific arguments for the complete set of
distributions.

beta beta a, b

non-central beta nbeta a, b, ncp
binomial binom n, p

Cauchy cauchy location, scale
chi-squared chisq daf

non-central chi-squared nchisq df, ncp
exponential exp scale (and not rate)
F f nl, n2
non-central F nf nl, n2, ncp
gamma gamma shape, scale
geometric geom P
hypergeometric hyper NR, NB, n

logistic logis location, scale

Chapter 6: The R APIL: entry points for C code

132

lognormal lnorm logmean, logsd
negative binomial nbinom size, prob
normal norm mu, sigma
Poisson pois lambda
Student’s t t n

non-central t nt df, delta
Studentized range tukey (*) rr, cc, df
uniform unif a, b

Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n
Wilcoxon signed rank signrank n

Entries marked with an asterisk only have ‘p’ and ‘q’ functions available, and none of the
non-central distributions have ‘r’ functions. After a call to dwilcox, pwilcox or qwilcox the
function wilcox_free() should be called, and similarly for the signed rank functions.

(If remapping is suppressed, the Normal distribution names are Rf _dnorm4, Rf _pnorm5 and
Rf_qgnorm5.)

6.7.2 Mathematical functions

double gammafn (double x) Function
double lgammafn (double x) Function
double digamma (double x) Function

[]
Funcin)
double trigamma (double x) [Function]
[]
[]
[]

double tetragamma (double x) Function
double pentagamma (double x) Function
double psigamma (double x, double deriv) Function

The Gamma function, the natural logarithm of its absolute value and first four derivatives
and the n-th derivative of Psi, the digamma function, which is the derivative of 1gammafn. In

other words, digamma (x) is the same as (psigamma(x,0), trigamma(x) == psigamma(x,1),
etc.
double beta (double a, double b) [Function]
double lbeta (double a, double b) [Function]
The (complete) Beta function and its natural logarithm.
double choose (double n, double k) [Function]
double 1lchoose (double n, double k) [Function]

The number of combinations of k items chosen from from n and the natural logarithm of its
absolute value, generalized to arbitrary real n. k is rounded to the nearest integer (with a
warning if needed).

double bessel_i (double x, double nu, double expo) [Function]

double bessel_j (double x, double nu) [Function]

double bessel_k (double x, double nu, double expo) [Function]

double bessel_y (double x, double nu) [Function]
Bessel functions of types I, J, K and Y with index nu. For bessel_i and bessel_k there
is the option to return exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use expo == 1 for
unscaled values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

Chapter 6: The R APIL: entry points for C code 133

double R_pow (double x, double y) [Function]

double R_pow_di (double x, int i) [Function]
R_pow(x, y) and R_pow_di(x, i) compute x"y and x" i, respectively using R_FINITE checks
and returning the proper result (the same as R) for the cases where x, y or i are 0 or missing
or infinite or NaN.

double loglp (double x) [Function]
Computes log(1l + x) (log 1 plus z), accurately even for small x, i.e., |z| < 1.
This should be provided by your platform, in which case it is not included in Rmath.h, but
is (probably) in math.h which Rmath.h includes.

double loglpmx (double x) [Function]
Computes log(1l + x) - x (log 1 plus T minus x), accurately even for small x, i.e., |z] < 1.

double loglpexp (double x) [Function]
Computes log(1l + exp(x)) (log 1 plus exp), accurately, notably for large x, e.g., > 720.

double expml (double x) [Function]
Computes exp(x) - 1 (ezp x minus 1), accurately even for small x, i.e., |z| < 1.

This should be provided by your platform, in which case it is not included in Rmath.h, but
is (probably) in math.h which Rmath.h includes.

double lgammalp (double x) [Function]
Computes log(gamma(x + 1)) (log(gamma(1 plus x))), accurately even for small x, i.e., 0 <
x < 0.5.

double cospi (double x) [Function]
Computes cos(pi * x) (where pi is 3.14159...), accurately, notably for half integer x.

This might be provided by your platform?, in which case it is not included in Rmath.h, but
is in math.h which Rmath.h includes.

double sinpi (double x) [Function]
Computes sin(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not included in Rmath.h, but is
in math.h which Rmath.h includes.

double tanpi (double x) [Function]
Computes tan(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not included in Rmath.h, but is
in math.h which Rmath.h includes.

double logspace_add (double logx, double logy) [Function]

double logspace_sub (double logx, double 1ogy) [Function]
Compute the log of a sum or difference from logs of terms, i.e., “x + y” as log (exp(logx)
+ exp(logy)) and “x - y” as log (exp(logx) - exp(logy)), without causing unnecessary
overflows or throwing away too much accuracy.

int imax2 (int x, int y) [Function]
int imin2 (int x, int y) [Function]
double fmax2 (double x, double y) [Function]
double fmin2 (double x, double y) [Function]

Return the larger (max) or smaller (min) of two integer or double numbers, respectively. Note
that fmax2 and fmin2 differ from C99’s fmax and fmin when one of the arguments is a Nal:
these versions return NaN.

2 It is an optional C11 extension.

Chapter 6: The R APIL: entry points for C code 134

double sign (double x) [Function]
Compute the signum function, where sign(x) is 1, 0, or —1, when x is positive, 0, or negative,
respectively, and NaN if x is a NaN.

double fsign (double x, double y) [Function]
Performs “transfer of sign” and is defined as |z| * sign(y).

double fprec (double x, double digits) [Function]
Returns the value of x rounded to digits decimal digits (after the decimal point).

This is the function used by R’s signif ().

double fround (double x, double digits) [Function]
Returns the value of x rounded to digits significant decimal digits.

This is the function used by R’s round ().

double ftrunc (double x) [Function]
Returns the value of x truncated (to an integer value) towards zero.

Note that this is no longer needed in C code, as C99 provide a trunc function. It is needed
for portable C++98 code.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing constants usually found
math.h and contains further ones that are used in statistical computations. All these are defined
to (at least) 30 digits accuracy in Rmath.h. The following definitions use 1n(x) for the natural
logarithm (log(x) in R).

Name Definition (1n = log) round(value, 7)
M_E e 2.7182818
M_LOG2E log2(e) 1.4426950
M_LOG10E log10(e) 0.4342945
M_LN2 In(2) 0.6931472
M_LN10 In(10) 2.3025851
M_PI us 3.1415927
M_PI_2 /2 1.5707963
M_PI_4 /4 0.7853982
M_1_PI /7 0.3183099
M_2_PI 2/m 0.6366198
M_2_SQRTPI 2 /sqrt () 1.1283792
M_SQRT2 sqrt(2) 1.4142136
M_SQRT1_2 1/sqrt(2) 0.7071068
M_SQRT_3 sqrt(3) 1.7320508
M_SQRT_32 sqrt(32) 5.6568542
M_L0OG10_2 log10(2) 0.3010300
M_2PI 2 6.2831853
M_SQRT_PI sqrt () 1.7724539
M_1_SQRT_2PI 1/sqrt(2m) 0.3989423
M_SQRT_24dPI sqrt(2/m) 0.7978846
M_LN_SQRT_PI In(sqrt(m)) 0.5723649
M_LN_SQRT_2PI In(sqrt(27)) 0.9189385
M_LN_SQRT_PId2 In(sqrt(w/2)) 0.2257914

There are a set of constants (PI, DOUBLE_EPS) (and so on) defined (unless STRICT_R_HEADERS
is defined) in the included header R_ext/Constants.h, mainly for compatibility with S.

Chapter 6: The R APIL: entry points for C code 135

Further, the included header R_ext/Boolean.h has enumeration constants TRUE and FALSE
of type Rboolean in order to provide a way of using “logical” variables in C consistently. This
can conflict with other software: for example it conflicts with the headers in IJG’s jpeg-9 (but
not earlier versions).

6.8 Optimization
The C code underlying optim can be accessed directly. The user needs to supply a function to
compute the function to be minimized, of the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second argument. The third
argument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

Some of the methods also require a gradient function
typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function is provided for finite-differencing,
nor for approximating the Hessian at the result.

The interfaces (defined in header R_ext/Applic.h) are
e Nelder Mead:
void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,
int *fail, double abstol, double intol, void x*ex,
double alpha, double beta, double gamma, int trace,
int *fncount, int maxit);

BFGS:

void vmmin(int n, double *x, double *Fmin,
optimfn fn, optimgr gr, int maxit, int trace,
int *mask, double abstol, double reltol, int nREPORT,
void *ex, int *fncount, int *grcount, int *fail);

Conjugate gradients:
void cgmin(int n, double *xin, double *x, double *Fmin,
optimfn fn, optimgr gr, int *fail, double abstol,
double intol, void *ex, int type, int trace,
int *fncount, int *grcount, int maxit);

Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,
double *upper, int *nbd, double *Fmin, optimfn fn,
optimgr gr, int *fail, void *ex, double factr,
double pgtol, int *fncount, int *grcount,
int maxit, char *msg, int trace, int nREPORT);

Simulated annealing:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,
int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is the number of parameters, x
or xin is the starting parameters on entry and x the final parameters on exit, with final value
returned in Fmin. Most of the other parameters can be found from the help page for optim: see
the source code src/appl/lbfgsb.c for the values of nbd, which specifies which bounds are to
be used.

Chapter 6: The R APIL: entry points for C code 136

6.9 Integration

The C code underlying integrate can be accessed directly. The user needs to supply a vector-
izing C function to compute the function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e., a C function, say fn, of type integr_
fn must basically do for(i in 1:n) x[i] := £(x[i], ex). The vectorization requirement can
be used to speed up the integrand instead of calling it n times. Note that in the current
implementation built on QUADPACK, n will be either 15 or 21. The ex argument is a pointer
passed down from the calling routine, normally used to carry auxiliary information.

There are interfaces (defined in header R_ext/Applic.h) for definite and for indefinite inte-
grals. ‘Indefinite’ means that at least one of the integration boundaries is not finite.
e Finite:
void Rdgags(integr_fn f, void *ex, double *a, double *b,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *1limit, int *lenw, int *last,
int *iwork, double *work);

e Indefinite:

void Rdgagi(integr_fn f, void *ex, double *bound, int *inf,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *1limit, int *lenw, int *last,
int *iwork, double *work) ;

Only the 3rd and 4th argument differ for the two integrators; for the definite integral, using
Rdqgags, a and b are the integration interval bounds, whereas for an indefinite integral, using
Rdgagi, bound is the finite bound of the integration (if the integral is not doubly-infinite) and
inf is a code indicating the kind of integration range,

inf =1 corresponds to (bound, +Inf),
inf = -1 corresponds to (-Inf, bound),
inf =2 corresponds to (-Inf, +Inf),

f and ex define the integrand function, see above; epsabs and epsrel specify the absolute
and relative accuracy requested, result, abserr and last are the output components value,
abs.err and subdivisions of the R function integrate, where neval gives the number of
integrand function evaluations, and the error code ier is translated to R’s integrate() $
message, look at that function definition. 1imit corresponds to integrate(. .., subdivisions
= *). It seems you should always define the two work arrays and the length of the second one
as

lenw = 4 * limit;
iwork = (int *) R_alloc(limit, sizeof(int));
work = (double *) R_alloc(lenw, sizeof(double));
The comments in the source code in src/appl/integrate.c give more details, particularly
about reasons for failure (ier >=1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made available to users’ C code. The
following is declared in header file Rinternals.h.

Chapter 6: The R APIL: entry points for C code 137

void R_orderVector (int* indx, int n, SEXP arglist, Rboolean nalast, [Function)]
Rboolean decreasing)

This corresponds to R’s order(..., na.last, decreasing). More specifically, indx

<- order(x, y, na.last, decreasing) corresponds to R_orderVector(indx, n,

Rf_lang2(x, y), nalast, decreasing) and for three vectors, Rf _lang3(x,y,z) is used as
arglist.

Note that R_orderVector () assumes the vector indx to be allocated to length > n. On
return, indx[] contains a permutation of 0: (n-1), i.e., 0-based C indices (and not 1-based
R indices, as R’s order()).

All other sort routines are declared in header file R_ext/Utils.h (included by R.h) and
include the following.

void R_isort (int* x, int n) [Function]
void R_rsort (double* x, int n) [Function]
void R_csort (Rcomplex* x, int n) [Function]
void rsort_with_index (double* x, int* index, int n) [Function]

The first three sort integer, real (double) and complex data respectively. (Complex numbers
are sorted by the real part first then the imaginary part.) NAs are sorted last.
rsort_with_index sorts on x, and applies the same permutation to index. NAs are sorted
last.

void revsort (double* x, int* index, int n) [Function]
Is similar to rsort_with_index but sorts into decreasing order, and NAs are not handled.

void iPsort (int* x, int n, int k) [Function]
void rPsort (double* x, int n, int k) [Function]
void cPsort (Rcomplex™ x, int n, int k) [Function]

These all provide (very) partial sorting: they permute x so that x[k] is in the correct place
with smaller values to the left, larger ones to the right.

void R_gsort (double *v, size_t i, size_t j) [Function]

void R_gsort_I (double *v, int *I, int i, int j) [Function]

void R_gsort_int (int *iv, size_t i, size_t j) [Function]

void R_gsort_int_I (int *iv, int *I, int i, int j) [Function]
These routines sort v[i:j] or iv[i:j] (using l-indexing, i.e., v[1] is the first element)
calling the quicksort algorithm as used by R’s sort (v, method = "quick") and documented
on the help page for the R function sort. The ..._I() versions also return the sort.index()
vector in I. Note that the ordering is not stable, so tied values may be permuted.

Note that NAs are not handled (explicitly) and you should use different sorting functions if
NAs can be present.

subroutine gsort4 (double precision v, integer indx, integer ii, integer jj) [Function]

subroutine gsort3 (double precision v, integer ii, integer jj) [Function]
The FORTRAN interface routines for sorting double precision vectors are gsort3 and gsort4,
equivalent to R_gsort and R_gsort_I, respectively.

void R_max_col (double* matrix, int* nr, int* nc, int* maxes, int* [Function]
ties_meth)

Given the nr by nc matrix matrix in column-major (“FORTRAN”) order, R_max_col()

returns in maxes[i-1] the column number of the maximal element in the i-th row (the same

as R’s max.col() function). In the case of ties (multiple maxima), *ties_meth is an integer

code in 1:3 determining the method: 1 = “random”, 2 = “first” and 3 = “last”. See R’s
help page ?max.col.

Chapter 6: The R APIL: entry points for C code 138

int findInterval (double* xt, int n, double x, Rboolean [Function)]
rightmost_closed, Rboolean all_inside, int ilo, int* mflag)
Given the ordered vector xt of length n, return the interval or index of x in xt[], typically
max(i; 1 <1i < n & xt[i] < x) where we use 1-indexing as in R and FORTRAN (but not C).
If rightmost_closed is true, also returns n—1 if x equals xt[n]. If all_inside is not 0, the result
is coerced to lie in 1: (n-1) even when x is outside the xt[] range. On return, *mflag equals
—1if x < xt[1], +1 if x >= xt[n], and 0 otherwise.

The algorithm is particularly fast when ilo is set to the last result of findInterval () and x
is a value of a sequence which is increasing or decreasing for subsequent calls.

There is also an F77_CALL (interv) () version of findInterval () with the same arguments,
but all pointers.

A system-independent interface to produce the name of a temporary file is provided as

char * R_tmpnam (const char *prefix, const char *tmpdir) [Function]

char * R_tmpnam2 (const char *prefix, const char *tmpdir, const char [Function]
*fileext)

Return a pathname for a temporary file with name beginning with prefix and ending with

fileext in directory tmpdir. A NULL prefix or extension is replaced by "". Note that the

return value is malloced and should be freed when no longer needed (unlike the system call
tmpnam).

There is also the internal function used to expand file names in several R functions, and
called directly by path.expand.

const char * R_ExpandFileName (const char *fn) [Function]
Expand a path name fn by replacing a leading tilde by the user’s home directory (if defined).
The precise meaning is platform-specific; it will usually be taken from the environment vari-
able HOME if this is defined.

For historical reasons there are FORTRAN interfaces to functions DIMACH and IT1MACH. These
can be called from C code as e.g. F77_CALL(d1mach) (4). Note that these are emulations of the
original functions by Fox, Hall and Schryer on NetLib at http://www.netlib.org/slatec/
src/ for IEC 60559 arithmetic (required by R).

6.11 Re-encoding

R has its own C-level interface to the encoding conversion capabilities provided by iconv because
there are incompatibilities between the declarations in different implementations of iconv.

These are declared in header file R_ext/Riconv.h.

void * Riconv_open (const char *to, const char *from) [Function]
Set up a pointer to an encoding object to be used to convert between two encodings: ""
indicates the current locale.

size_t Riconv (void *cd, const char **inbuf, size_t *inbytesleft, char [Function]
**outbuf, size_t *outbytesleft)

Convert as much as possible of inbuf to outbuf. Initially the int variables indicate the
number of bytes available in the buffers, and they are updated (and the char pointers are
updated to point to the next free byte in the buffer). The return value is the number of
characters converted, or (size_t)-1 (beware: size_t is usually an unsigned type). It should
be safe to assume that an error condition sets errno to one of E2BIG (the output buffer is
full), EILSEQ (the input cannot be converted, and might be invalid in the encoding specified) or
EINVAL (the input does not end with a complete multi-byte character).

http://www.netlib.org/slatec/src/
http://www.netlib.org/slatec/src/

Chapter 6: The R APIL: entry points for C code 139

int Riconv_close (void * cd) [Function]
Free the resources of an encoding object.

6.12 Allowing interrupts

No port of R can be interrupted whilst running long computations in compiled code, so pro-
grammers should make provision for the code to be interrupted at suitable points by calling
from C

#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);
and from FORTRAN
subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to R’s error handling
functions.

Note that it is possible that the code behind one of the entry points defined here if called
from your C or FORTRAN code could be interruptible or generate an error and so not return
to your code.

6.13 Platform and version information

The header files define USING_R, which can be used to test if the code is indeed being used with
R.

Header file Rconfig.h (included by R.h) is used to define platform-specific macros that are
mainly for use in other header files. The macro WORDS_BIGENDIAN is defined on big-endian®
systems (e.g. most OSes on Sparc and PowerPC hardware) and not on little-endian systems
(such as 1686 and x86_64 on all OSes, and Linux on Alpha and Itanium). It can be useful when
manipulating binary files. The macro SUPPORT_OPENMP is defined on suitable systems and can
be used in conjunction with the SUPPORT_OPENMP_* macros in packages that want to make use
of OpenMP.

Header file Rversion.h (not included by R.h) defines a macro R_VERSION giving the version
number encoded as an integer, plus a macro R_Version to do the encoding. This can be used to
test if the version of R is late enough, or to include back-compatibility features. For protection
against very old versions of R which did not have this macro, use a construction such as

#if defined (R_VERSION) && R_VERSION >= R_Version(1l, 9, 0)
#endif
More detailed information is available in the macros R_MAJOR, R_MINOR, R_YEAR, R_MONTH and

R_DAY: see the header file Rversion.h for their format. Note that the minor version includes
the patchlevel (as in ‘9.0’).

6.14 Inlining C functions

The C99 keyword inline should be recognized by all compilers now used to build R. Portable
code which might be used with earlier versions of R can be written using the macro R_INLINE
(defined in file Rconfig.h included by R.h), as for example from package cluster

#include <R.h>

static R_INLINE int ind_2(int 1, int j)

3 http://en.wikipedia.org/wiki/Endianness.

http://CRAN.R-project.org/package=cluster
http://en.wikipedia.org/wiki/Endianness

Chapter 6: The R APIL: entry points for C code 140

}

Be aware that using inlining with functions in more than one compilation unit is almost
impossible to do portably, see http://www.greenend.org.uk/rjk/2003/03/inline.html, so
this usage is for static functions as in the example. All the R configure code has checked is
that R_INLINE can be used in a single C file with the compiler used to build R. We recommend
that packages making extensive use of inlining include their own configure code.

6.15 Controlling visibility

Header R_ext/Visibility has some definitions for controlling the visibility of entry points.
These are only effective when ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined — this is checked when
R is configured and recorded in header Rconfig.h (included by R_ext/Visibility.h). It is
generally defined on modern Unix-alikes with a recent compiler, but not supported on OS X nor
Windows. Minimizing the visibility of symbols in a shared library will both speed up its loading
(unlikely to be significant) and reduce the possibility of linking to the wrong entry points of the
same name.

C/C++ entry points prefixed by attribute_hidden will not be visible in the shared object.
There is no comparable mechanism for FORTRAN entry points, but there is a more comprehen-
sive scheme used by, for example package stats. Most compilers which allow control of visibility
will allow control of visibility for all symbols via a flag, and where known the flag is encapsulated
in the macros ‘C_VISIBILITY’ and F77_VISIBILITY for C and FORTRAN compilers. These are
defined in etc/Makeconf and so available for normal compilation of package code. For example,
src/Makevars could include

PKG_CFLAGS=$(C_VISIBILITY)
PKG_FFLAGS=$(F77_VISIBILITY)

This would end up with no visible entry points, which would be pointless. However, the
effect of the flags can be overridden by using the attribute_visible prefix. A shared object
which registers its entry points needs only for have one visible entry point, its initializer, so for
example package stats has

void attribute_visible R_init_stats(D1lInfo *d1l1l)

{
R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);
R_useDynamicSymbols(dll, FALSE);

¥

The visibility mechanism is not available on Windows, but there is an equally
effective way to control which entry points are visible, by supplying a definitions file
pkgnme/src/pkgname-win.def: only entry points listed in that file will be visible. Again using
stats as an example, it has

LIBRARY stats.dll
EXPORTS
R_init_stats

6.16 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical functions documented in Rmath.h, as a
standalone library 1ibRmath under both Unix-alikes and Windows. (This includes the functions
documented in Section 6.7 [Numerical analysis subroutines|, page 130 as from that header file.)

http://www.greenend.org.uk/rjk/2003/03/inline.html

Chapter 6: The R APIL: entry points for C code 141

The library is not built automatically when R is installed, but can be built in the directory
src/nmath/standalone in the R sources: see the file README there. To use the code in your
own C program include

#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘~-1Rmath’ (and perhaps ‘-1m’). There is an example file test.c.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have to use the one supplied,
which is the Marsaglia-multicarry with an entry points

set_seed(unsigned int, unsigned int)
to set its seeds and

get_seed(unsigned int *, unsigned int *)
to read the seeds).

6.17 Organization of header files
The header files which R installs are in directory R_INCLUDE_DIR (default R_HOME/include).

This currently includes

R.h

S.h
Rinternals.h
Rdefines.h

Rmath.h
Rversion.h
Rinterface.h
Rembedded.h
R_ext/Applic.h
R_ext/BLAS.h

R_ext/Callbacks.h
R_ext/GetX11Image.h

R_ext/Lapack.h
R_ext/Linpack.h

R_ext/Parse.h

R_ext/RStartup.h
R_ext/Rdynload.h
R_ext/R-ftp-http.h
R_ext/Riconv.h
R_ext/Visibility.h
R_ext/eventloop.h

Rconfig.h
R_ext/Arith.h
R_ext/Boolean.h

includes many other files

different version for code ported from S
definitions for using R’s internal structures
macros for an S-like interface to the above (no
longer maintained)

standalone math library

R version information

for add-on front-ends (Unix-alikes only)

for add-on front-ends

optimization and integration

C definitions for BLAS routines

C (and R function) top-level task handlers
X11Image interface used by package trkplot

C definitions for some LAPACK routines

C definitions for some LINPACK routines, not all
of which are included in R

a small part of R’s parse interface: not part of the
stable API.

for add-on front-ends

needed to register compiled code in packages
interface to internal method of download.file
interface to iconv

definitions controlling visibility

for add-on front-ends and for packages that need
to share in the R event loops (on all platforms)

The following headers are included by R.h:

configuration info that is made available
handling for NAs, NaNs, Inf/-Inf
TRUE/FALSE type

Chapter 6: The R APIL: entry points for C code 142

R_ext/Complex.h C typedefs for R’s complex

R_ext/Constants.h constants

R_ext/Error.h error handling

R_ext/Memory.h memory allocation

R_ext/Print.h Rprintf and variations.

R_ext/RS.h definitions common to R.h and S.h, including
F77_CALL etc.

R_ext/Random.h random number generation

R_ext/Utils.h sorting and other utilities

R_ext/libextern.h definitions for exports from R.d11 on Windows.

The graphics systems are exposed in headers R_ext/GraphicsEngine.h, R_
ext/GraphicsDevice.h (which it includes) and R_ext/QuartzDevice.h. Facilities for defining
custom connection implementations are provided in R_ext/Connections.h, but make sure you
consult the file before use.

Let us re-iterate the advice to include system headers before the R header files, especially
Rinternals.h (included by Rdefines.h) and Rmath.h, which redefine names which may be
used in system headers (fewer if ‘R_NO_REMAP’ is defined, or ‘R_NO_REMAP_RMATH’ for Rmath.h,
as from R 3.1.0).

Chapter 7: Generic functions and methods 143

7 Generic functions and methods

R programmers will often want to add methods for existing generic functions, and may want to
add new generic functions or make existing functions generic. In this chapter we give guidelines
for doing so, with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3, and not with the S4
(formal) methods of package methods.

The key function for methods is NextMethod, which dispatches the next method. It is quite
typical for a method function to make a few changes to its arguments, dispatch to the next
method, receive the results and modify them a little. An example is

t.data.frame <- function(x)
{
x <- as.matrix(x)
NextMethod ("t")
}

Also consider predict.glm: it happens that in R for historical reasons it calls predict.1lm di-
rectly, but in principle (and in S originally and currently) it could use NextMethod. (NextMethod
seems under-used in the R sources. Do be aware that there are S/R differences in this area, and
the example above works because there is a nexrt method, the default method, not that a new
method is selected when the class is changed.)

Any method a programmer writes may be invoked from another method by NextMethod,
with the arguments appropriate to the previous method. Further, the programmer cannot predict
which method NextMethod will pick (it might be one not yet dreamt of), and the end user calling
the generic needs to be able to pass arguments to the next method. For this to work

A method must have all the arguments of the generic, including . .. if the generic
does.

It is a grave misunderstanding to think that a method needs only to accept the arguments it

needs. The original S version of predict.lm did not have a ... argument, although predict
did. It soon became clear that predict.glm needed an argument dispersion to handle over-
dispersion. As predict.lm had neither a dispersion nor a ... argument, NextMethod could

no longer be used. (The legacy, two direct calls to predict.1lm, lives on in predict.glm in R,
which is based on the workaround for S3 written by Venables & Ripley.)

Further, the user is entitled to use positional matching when calling the generic, and the
arguments to a method called by UseMethod are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the generic.
To see the scale of this problem, consider the generic function scale, defined as

scale <- function (x, center = TRUE, scale = TRUE)
UseMethod ("scale")

Suppose an unthinking package writer created methods such as
scale.foo <- function(x, scale = FALSE, ...) { }
Then for x of class "foo" the calls

scale(x, , TRUE)
scale(x, scale = TRUE)

would do most likely do different things, to the justifiable consternation of the end user.

To add a further twist, which default is used when a user calls scale(x) in our example?
What if

Chapter 7: Generic functions and methods 144

scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default specified in the method that is used, but the
default specified in the generic may be the one the user sees. This leads to the recommendation:

If the generic specifies defaults, all methods should use the same defaults.
An easy way to follow these recommendations is to always keep generics simple, e.g.
scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in all possible methods
implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument list will be the maximal
set of arguments for methods, including those written elsewhere years later. So choosing a good
set of arguments may well be an important design issue, and there need to be good arguments
not to include a ... argument.

If a ... argument is supplied, some thought should be given to its position in the argument
sequence. Arguments which follow ... must be named in calls to the function, and they must
be named in full (partial matching is suppressed after ...). Formal arguments before ... can
be partially matched, and so may ‘swallow’ actual arguments intended for Although it is
commonplace to make the ... argument the last one, that is not always the right choice.

Sometimes package writers want to make generic a function in the base package, and request
a change in R. This may be justifiable, but making a function generic with the old definition as
the default method does have a small performance cost. It is never necessary, as a package can
take over a function in the base package and make it generic by something like

foo <- function(object, ...) UseMethod("foo")
foo.default <- function(object, ...) base::foo(object)

Earlier versions of this manual suggested assigning foo.default <- base::foo. This is not a
good idea, as it captures the base function at the time of installation and it might be changed
as R is patched or updated.

The same idea can be applied for functions in other packages with namespaces.

Chapter 8: Linking GUIs and other front-ends to R 145

8 Linking GUlIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to mean a GUI or other
application that has the ability to submit commands to R and perhaps to receive results back (not
necessarily in a text format). There are other routes besides those described here, for example
the package Rserve (from CRAN, see also http://www.rforge.net/Rserve/) and connections
to Java in ‘JRI’ (part of the rJava package on CRAN) and the Omegahat/Bioconductor package
‘SJava’.

Note that the APIs described in this chapter are only intended to be used in an alternative
front-end: they are not part of the API made available for R packages and can be dangerous
to use in a conventional package (although packages may contain alternative front-ends). Con-
versely some of the functions from the API (such as R_alloc) should not be used in front-ends.

8.1 Embedding R under Unix-alikes

R can be built as a shared library! if configured with ——enable-R-shlib. This shared library
can be used to run R from alternative front-end programs. We will assume this has been done
for the rest of this section. Also, it can be built as a static library if configured with —-enable-
R-static-1lib, and that can be used in a very similar way (at least on Linux: on other platforms
one needs to ensure that all the symbols exported by 1ibR.a and linked into the front-end).

The command-line R front-end, R_HOME/bin/exec/R, is one such example, and the former
GNOME (see package gnomeGUI on CRAN’s ‘Archive’ area) and OS X consoles are others. The
source for R_HOME/bin/exec/R is in file src/main/Rmain.c and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */
void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)

{
R_running_as_main_program = 1;
Rf_initialize_R(ac, av);
Rf_mainloop(); /* does not return */
return O;

}

indeed, misleadingly simple. Remember that R_HOME/bin/exec/R is run from a shell script
R_HOME/bin/R which sets up the environment for the executable, and this is used for
e Setting R_HOME and checking it is valid, as well as the path R_SHARE_DIR and R_DOC_DIR
to the installed share and doc directory trees. Also setting R_ARCH if needed.
e Setting LD_LIBRARY_PATH to include the directories used in linking R. This is recorded as
the default setting of R_LD_LIBRARY_PATH in the shell script R_HOME/etcR_ARCH/ldpaths.

e Processing some of the arguments, for example to run R under a debugger and to launch
alternative front-ends to provide GUIs.

The first two of these can be achieved for your front-end by running it via R CMD. So, for example

R CMD /usr/local/lib/R/bin/exec/R
R CMD exec/R

will both work in a standard R installation. (R CMD looks first for executables in R_HOME/bin.
These command-lines need modification if a sub-architecture is in use.) If you do not want to

! In the parlance of OS X this is a dynamic library, and is the normal way to build R on that platform.

http://CRAN.R-project.org/package=Rserve
http://www.rforge.net/Rserve/
http://CRAN.R-project.org/package=rJava

Chapter 8: Linking GUIs and other front-ends to R 146

run your front-end in this way, you need to ensure that R_HOME is set and LD_LIBRARY_PATH is
suitable. (The latter might well be, but modern Unix/Linux systems do not normally include
/usr/local/lib (/usr/local/1ib64 on some architectures), and R does look there for system
components.)

The other senses in which this example is too simple are that all the internal defaults are used
and that control is handed over to the R main loop. There are a number of small examples? in the
tests/Embedding directory. These make use of Rf_initEmbeddedR in src/main/Rembedded.c,
and essentially use

#include <Rembedded.h>

int main(int ac, char **av)

{
/* do some setup */
Rf_initEmbeddedR(argc, argv);
/* do some more setup */

/* submit some code to R, which is done interactively via
run_Rmainloop();

A possible substitute for a pseudo-comnsole is

R_ReplDLLinit();
while (R_ReplDLLdo1() > 0) {
/* add user actions here if desired */

}

*/
Rf_endEmbeddedR(0) ;

/* final tidying up after R is shutdown */
return O;

}
If you do not want to pass R arguments, you can fake an argv array, for example by

char *argv[]= {"REmbeddedPostgres", "--silent"};
Rf_initEmbeddedR(sizeof (argv)/sizeof (argv[0]), argv);

However, to make a GUI we usually do want to run run_Rmainloop after setting up various

parts of R to talk to our GUI, and arranging for our GUI callbacks to be called during the R
mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and Rf_endEmbeddedR
change the settings of the FPU (e.g. to allow errors to be trapped and to make use of extended
precision registers).

The standard code sets up a session temporary directory in the usual way, unless R_TempDir
is set to a non-NULL value before Rf_initEmbeddedR is called. In that case the value is assumed
to contain an existing writable directory (no check is done), and it is not cleaned up when R is
shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set R_Interactive (defined in
Rinterface.h) subsequently to change this.

Note that R expects to be run with the locale category ‘LC_NUMERIC’ set to its default value
of C, and so should not be embedded into an application which changes that.

2 but these are not part of the automated test procedures and so little tested.

Chapter 8: Linking GUIs and other front-ends to R 147

It is the user’s responsibility to attempt to initialize only once. To protect the R interpreter,
Rf_initialize_R will exit the process if re-initialization is attempted.

8.1.1 Compiling against the R library
Suitable flags to compile and link against the R (shared or static) library can be found by

R CMD config --cppflags
R CMD config --ldflags

(These apply only to an uninstalled copy or a standard install.)
If R is installed, pkg-config is available and neither sub-architectures nor an OS X framework

have been used, alternatives for a shared R library are

pkg-config --cflags 1ibR

pkg-config --1ibs 1ibR
and for a static R library

pkg-config --cflags 1libR

pkg-config --libs --static 1ibR
(This may work for an installed OS framework if pkg-config is taught where to look for 1ibR.pc:
it is installed inside the framework.)

However, a more comprehensive way is to set up a Makefile to compile the front-end.
Suppose file myfe.c is to be compiled to myfe. A suitable Makefile might be

include ${R_HOME}/etc${R_ARCH}/Makeconf
all: myfe

The following is not needed, but avoids PIC flags.
myfe.o: myfe.c
$(CC) $(ALL_CPPFLAGS) $(CFLAGS) -c myfe.c -o $@

replace $(LIBR) $(LIBS) by $(STATIC_LIBR) if R was build with a static 1ibR
myfe: myfe.o
$ (MAIN_LINK) -o $@ myfe.o $(LIBR) $(LIBS)
invoked as

R CMD make
R CMD myfe

Additional flags which $ (MAIN_LINK) includes are, amongst others, those to select OpenMP
and --export-dynamic for the GNU linker on some platforms. In principle $(LIBS) is not
needed when using a shared R library as 1ibR is linked against those libraries, but some platforms
need the executable also linked against them.

8.1.2 Setting R callbacks

For Unix-alikes there is a public header file Rinterface.h that makes it possible to change the
standard callbacks used by R in a documented way. This defines pointers (if R_INTERFACE_PTRS
is defined)

extern void (*ptr_R_Suicide) (const char *);

extern void (*ptr_R_ShowMessage) (const char *);

extern int (*ptr_R_ReadConsole) (const char *, unsigned char *, int, int);
extern void (*ptr_R_WriteConsole) (const char *, int);

extern void (*ptr_R_WriteConsoleEx) (const char *, int, int);

extern void (*ptr_R_ResetConsole) ();

extern void (*ptr_R_FlushConsole) ();

extern void (*ptr_R_ClearerrConsole) ();

Chapter 8: Linking GUIs and other front-ends to R 148

extern void (*ptr_R_Busy) (int);

extern void (*ptr_R_CleanUp) (SA_TYPE, int, int);

extern int (*ptr_R_ShowFiles) (int, const char **, const char **,
const char *, Rboolean, const char *);

extern int (*ptr_R_ChooseFile) (int, char *, int);

extern int (*ptr_R_EditFile) (const char *);

extern void (*ptr_R_loadhistory) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_savehistory) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_addhistory) (SEXP, SEXP, SEXP, SEXP);

// added in R 3.0.0

extern int (*ptr_R_EditFiles) (int, const char #**, const char #*x, const char *);

extern SEXP (*ptr_do_selectlist) (SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataentry) (SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataviewer) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_ProcessEvents) ();

which allow standard R callbacks to be redirected to your GUI. What these do is generally
documented in the file src/unix/system.txt.

void R_ShowMessage (char *message) [Function]
This should display the message, which may have multiple lines: it should be brought to the
user’s attention immediately.

void R_Busy (int which) [Function]
This function invokes actions (such as change of cursor) when R embarks on an extended
computation (which=1) and when such a state terminates (which=0).

int R_ReadConsole (const char *prompt, unsigned char *buf, int buflen, [Function]
int hist)

void R_WriteConsole (const char *buf, int buflen) Function]

void R_WriteConsoleEx (const char *buf, int buflen, int otype) Function

void R_FlushConsole () Function
void R_ClearErrConsole () Function
These functions interact with a console.

[
[
void R_ResetConsole () [Function
[
[

|
]
]
]

R_ReadConsole prints the given prompt at the console and then does a fgets(3)—like oper-
ation, transferring up to buflen characters into the buffer buf. The last two bytes should be
set to ‘"\n\0"’ to preserve sanity. If hist is non-zero, then the line should be added to any
command history which is being maintained. The return value is 0 is no input is available
and >0 otherwise.

R_WriteConsoleEx writes the given buffer to the console, otype specifies the output type
(regular output or warning/error). Call to R_WriteConsole(buf, buflen) is equivalent to
R_WriteConsoleEx (buf, buflen, 0). To ensure backward compatibility of the callbacks,
ptr_R_WriteConsoleEx is used only if ptr_R_WriteConsole is set to NULL. To ensure that
stdout () and stderr () connections point to the console, set the corresponding files to NULL
via

R_Outputfile = NULL;
R_Consolefile = NULL;
R_ResetConsole is called when the system is reset after an error. R_FlushConsole is called

to flush any pending output to the system console. R_ClearerrConsole clears any errors
associated with reading from the console.

Chapter 8: Linking GUIs and other front-ends to R 149

int R_ShowFiles (int nfile, const char **file, const char **headers, [Function]
const char *wtitle, Rboolean del, const char *pager)
This function is used to display the contents of files.

int R_ChooseFile (int new, char *buf, int len) [Function]
Choose a file and return its name in buf of length len. Return value is 0 for success, > 0
otherwise.

int R_EditFile (const char *buf) [Function]
Send a file to an editor window.

int R_EditFiles (int nfile, const char **file, const char **title, const [Function]
char *editor)
Send nfile files to an editor, with titles possibly to be used for the editor window(s).

SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP); [Function]

.Internal functions for loadhistory, savehistory and timestamp.
If the console has no history mechanism these can be as simple as
SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)

{
errorcall(call, "loadhistory is not implemented");
return R_NilValue;
}
SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
errorcall(call, "savehistory is not implemented");
return R_NilValue;
}
SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
return R_NilValue;
}

The R_addhistory function should return silently if no history mechanism is present, as a
user may be calling timestamp purely to write the time stamp to the console.

void R_Suicide (const char *message) [Function]
This should abort R as rapidly as possible, displaying the message. A possible implementation
is

void R_Suicide (const char *message)

{
char ppl[1024];
snprintf (pp, 1024, "Fatal error: %s\n", s);
R_ShowMessage (pp) ;
R_CleanUp(SA_SUICIDE, 2, 0);
}
void R_CleanUp (SA_TYPE saveact, int status, int RunLast) [Function]
This function invokes any actions which occur at system termination. It needs to be quite
complex:

#include <Rinterface.h>
#include <Rembedded.h> /* for Rf_KillAllDevices */

Chapter 8: Linking GUIs and other front-ends to R 150

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)

{
if (saveact == SA_DEFAULT) saveact = SaveAction;
if (saveact == SA_SAVEASK) {
/* ask what to do and set saveact */
}
switch (saveact) {
case SA_SAVE:
if (runLast) R_dot_Last();
if (R_DirtyImage) R_SaveGlobalEnv();
/* save the console history in R_HistoryFile */
break;
case SA_NOSAVE:
if (runlast) R_dot_Last();
break;
case SA_SUICIDE:
default:
break;
}
R_RunExitFinalizers();
/* clean up after the editor e.g. CleanEd() */
R_CleanTempDir () ;
/* close all the graphics devices */
if (saveact != SA_SUICIDE) Rf_KillAllDevices();
fpu_setup(FALSE) ;
exit (status);
}

These callbacks should never be changed in a running R session (and hence cannot be called
from an extension package).

SEXP R_dataentry (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_dataviewer (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_selectlist (SEXP, SEXP, SEXP, SEXP); [Function]

.External functions for dataentry (and edit on matrices and data frames), View and
select.list. These can be changed if they are not currently in use.

8.1.3 Registering symbols

An application embedding R needs a different way of registering symbols because it is not a
dynamic library loaded by R as would be the case with a package. Therefore R reserves a
special D11Info entry for the embedding application such that it can register symbols to be
used with .C, .Call etc. This entry can be obtained by calling getEmbeddingD11Info, so a
typical use is

D11Info *info = R_getEmbeddingDllInfo();
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

Chapter 8: Linking GUIs and other front-ends to R 151

The native routines defined by cMethods and callMethods should be present in the embed-
ding application. See Section 5.4 [Registering native routines|, page 95 for details on registering
symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is the handling of event loops, at
least if a single thread is used. R uses events and timers for

e Running X11 windows such as the graphics device and data editor, and interacting with
them (e.g., using locator()).

e Supporting Tcl/Tk events for the tcltk package (for at least the X11 version of Tk).
e Preparing input.

e Timing operations, for example for profiling R code and Sys.sleep().

e Interrupts, where permitted.

Specifically, the Unix-alike command-line version of R runs separate event loops for
e Preparing input at the console command-line, in file src/unix/sys-unix.c.

e Waiting for a response from a socket in the internal functions underlying FTP and HTTP
transfers in download.file() and for direct socket access, in files src/modules/internet/
nanoftp.c, src/modules/internet/nanohttp.c and src/modules/internet/Rsock.c

e Mouse and window events when displaying the X11-based dataentry window, in file
src/modules/X11/dataentry.c. This is regarded as modal, and no other events are ser-
viced whilst it is active.

There is a protocol for adding event handlers to the first two types of event loops, using
types and functions declared in the header R_ext/eventloop.h and described in comments in
file src/unix/sys-std.c. It is possible to add (or remove) an input handler for events on a
particular file descriptor, or to set a polling interval (via R_wait_usec) and a function to be
called periodically via R_PolledEvents: the polling mechanism is used by the tcltk package.

It is not intended that these facilities are used by packages, but if they are needed exception-
ally, the package should ensure that it cleans up and removes its handlers when its namespace
is unloaded.

An alternative front-end needs both to make provision for other R events whilst waiting for
input, and to ensure that it is not frozen out during events of the second type. This is not
handled very well in the existing examples. The GNOME front-end ran a private handler for
polled events by setting

extern int (*R_timeout_handler) ();
extern long R_timeout_val;

if (R_timeout_handler && R_timeout_val)
gtk_timeout_add(R_timeout_val, R_timeout_handler, NULL);
gtk_main ();
whilst it is waiting for console input. This obviously handles events for Gtk windows (such as the
graphics device in the gtkDevice package), but not X11 events (such as the X11 () device) or for
other event handlers that might have been registered with R. It does not attempt to keep itself
alive whilst R is waiting on sockets. The ability to add a polled handler as R_timeout_handler
is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the testing is done in that context.
There is a potential issue with the stack-checking mechanism where threads are involved. This
uses two variables declared in Rinterface.h (if CSTACK_DEFNS is defined) as

Chapter 8: Linking GUIs and other front-ends to R 152

extern uintptr_t R_CStackLimit; /* C stack limit */
extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is a C99 type for which a substitute is defined in R, so your code needs to
define HAVE_UINTPTR_T appropriately.

These will be set® when Rf _initialize_R is called, to values appropriate to the main thread.
Stack-checking can be disabled by setting R_CStackLimit = (uintptr_t)-1, but it is better to
if possible set appropriate values. (What these are and how to determine them are OS-specific,
and the stack size limit may differ for secondary threads. If you have a choice of stack size, at
least 10Mb is recommended.)

You may also want to consider how signals are handled: R sets signal handlers for sev-
eral signals, including SIGINT, SIGSEGV, SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be
suppressed by setting the variable R_SignalHandlers (declared in Rinterface.h) to 0.

Note that these variables must not be changed by an R package: a package should not calling
R internals which makes use of the stack-checking mechanism on a secondary thread.

8.2 Embedding R under Windows

All Windows interfaces to R call entry points in the DLL R.d11, directly or indirectly. Simpler
applications may find it easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication between Windows appli-
cations. One application (here R) is run as COM server which offers services to clients, here
the front-end calling application. The services are described in a ‘Type Library’ and are (more
or less) language-independent, so the calling application can be written in C or C++ or Visual
Basic or Perl or Python and so on. The ‘D’ in (D)COM refers to ‘distributed’, as the client and
server can be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are currently available
that interface directly with R and provide a (D)COM server:

e There is a (D)COM server called StatConnector written by Thomas Baier available via
http://sunsite.univie.ac.at/rcom/, which works with R packages to support transfer
of data to and from R and remote execution of R commands, as well as embedding of an R
graphics window.

Recent versions have usage restrictions.

e Another (D)COM server, RDCOMServer, is available from http://www.omegahat .org/.
Its philosophy is discussed in http://www.omegahat .org/RDCOMServer/Docs/Paradigm.
html and is very different from the purpose of this section.

8.2.2 Calling R.dll directly
The R DLL is mainly written in C and has _cdecl entry points. Calling it directly will be tricky
except from C code (or C++ with a little care).

There is a version of the Unix-alike interface calling

int Rf_initEmbeddedR(int ac, char *x*av);
void Rf_endEmbeddedR(int fatal);

which is an entry point in R.d11. Examples of its use (and a suitable Makefile.win) can be found

in the tests/Embedding directory of the sources. You may need to ensure that R_HOME/bin is
in your PATH so the R DLLs are found.

3 at least on platforms where the values are available, that is having getrlimit and on Linux or having sysctl

supporting KERN_USRSTACK, including FreeBSD and OS X.

http://sunsite.univie.ac.at/rcom/
http://www.omegahat.org/
http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html
http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html

Chapter 8: Linking GUIs and other front-ends to R 153

Examples of calling R.d11 directly are provided in the directory src/gnuwin32/front-ends,
including a simple command-line front end rtest.c whose code is

#define Win32

#include <windows.h>

#include <stdio.h>

#include <Rversion.h>

#define LibExtern __declspec(dllimport) extern
#include <Rembedded.h>

#include <R_ext/RStartup.h>

/* for askok and askyesnocancel */

#include <graphapp.h>

/* for signal-handling code */
#include <psignal.h>

/* simple input, simple output */
/* This version blocks all events: a real one needs to call ProcessEvents

frequently. See rterm.c and ../system.c for one approach using
a separate thread for input.

*/
int myReadConsole(const char *prompt, char *buf, int len, int addtohistory)
{
fputs(prompt, stdout);
fflush(stdout);
if (fgets(buf, len, stdin)) return 1; else return O;
}
void myWriteConsole(const char *buf, int len)
{
printf ("%s", buf);
}
void myCallBack(void)
{
/* called during i/o, eval, graphics in ProcessEvents */
}
void myBusy(int which)
{
/* set a busy cursor ... if which = 1, unset if which = 0 */
}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)
{

structRstart rp;

Rstart Rp = &rp;

char Rversion[25], *RHome;

sprintf (Rversion, "%s.%s", R_MAJOR, R_MINOR);

if (strcmp(getDLLVersion(), Rversion) != 0) {
fprintf(stderr, "Error: R.DLL version does not match\n");
exit(1);

}

R_setStartTime();

R_DefParams (Rp) ;

if ((RHome = get_R_HOME()) == NULL) {
fprintf(stderr, "R_HOME must be set in the environment or Registry\n");
exit(1);

}

Rp->rhome = RHome;

Chapter 8: Linking GUIs and other front-ends to R 154

Rp->home = getRUser();
Rp->CharacterMode = LinkDLL;
Rp->ReadConsole = myReadConsole;
Rp->WriteConsole = myWriteConsole;
Rp->CallBack = myCallBack;
Rp->ShowMessage = askok;
Rp->YesNoCancel = askyesnocancel;
Rp->Busy = myBusy;

Rp—->R_Quiet = TRUE; /* Default is FALSE */
Rp->R_Interactive = FALSE; /* Default is TRUE */
Rp->RestoreAction = SA_RESTORE;

Rp->SaveAction = SA_NOSAVE;

R_SetParams (Rp) ;
R_set_command_line_arguments(argc, argv);

FlushConsoleInputBuffer (GetStdHandle (STD_INPUT_HANDLE)) ;

signal (SIGBREAK, my_onintr);
GA_initapp(0, 0);
readconsolecfg();
setup_Rmainloop();
#ifdef SIMPLE_CASE
run_Rmainloop() ;
#else
R_ReplDLLinit();
while (R_ReplDLLdo1() > 0) {
/* add user actions here if desired */
}
/* only get here on EOF (not q()) */
#endif
Rf_endEmbeddedR (0) ;
return O;

}

The ideas are

Check that the front-end and the linked R.d11 match — other front-ends may allow a looser
match.

Find and set the R home directory and the user’s home directory. The former
may be available from the Windows Registry: it will be in HKEY_LOCAL_
MACHINE\Software\R-core\R\InstallPath from an administrative install and
HKEY_CURRENT_USER\Software\R-core\R\InstallPath otherwise, if selected during
installation (as it is by default).

Define startup conditions and callbacks via the Rstart structure. R_DefParams sets the
defaults, and R_SetParams sets updated values.

Record the command-line arguments used by R_set_command_line_arguments for use by
the R function commandArgs().

Set up the signal handler and the basic user interface.
Run the main R loop, possibly with our actions intermeshed.

Arrange to clean up.

An underlying theme is the need to keep the GUI ‘alive’, and this has not been done in

this example. The R callback R_ProcessEvents needs to be called frequently to ensure that
Windows events in R windows are handled expeditiously. Conversely, R needs to allow the GUI
code (which is running in the same process) to update itself as needed — two ways are provided
to allow this:

R_ProcessEvents calls the callback registered by Rp—>callback. A version of this is used
to run package Tcl/Tk for tcltk under Windows, for the code is

Chapter 8: Linking GUIs and other front-ends to R 155

void R_ProcessEvents(void)

{
while (peekevent()) doevent(); /* Windows events for GraphApp */
if (UserBreak) { UserBreak = FALSE; onintr(); }
R_CallBackHook() ;
if (R_tcldo) R_tcldo();

}

e The mainloop can be split up to allow the calling application to take some action after each
line of input has been dealt with: see the alternative code below #ifdef SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although these include
pagers, the windows () graphics device, the R data and script editors and various popups such
as choose.file() and select.list (). It would be possible to replace all of these, but it seems
easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as RGui.exe shows) but it will normally
be easier* to use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW executables default
to 2Mb, and Visual C++ ones to 1Mb. The latter stack sizes are too small for a number of R
applications, so general-purpose front-ends should use a larger stack size.

8.2.3 Finding R_HOME

Both applications which embed R and those which use a system call to invoke R (as
Rscript.exe, Rterm.exe or R.exe) need to be able to find the R bin directory. The sim-
plest way to do so is the ask the user to set an environment variable R_HOME and use that, but
naive users may be flummoxed as to how to do so or what value to use.

The R for Windows installers have for a long time allowed the value of R_HOME to be recorded
in the Windows Registry: this is optional but selected by default. Where it is recorded has
changed over the years to allow for multiple versions of R to be installed at once, and to allow
32- and 64-bit versions of R to be installed on the same machine.

The basic Registry location is Software\R-core\R. For an administrative install this is
under HKEY_LOCAL_MACHINE and on a 64-bit OS HKEY_LOCAL_MACHINE\Software\R-core\R is
by default redirected for a 32-bit application, so a 32-bit application will see the information for
the last 32-bit install, and a 64-bit application that for the last 64-bit install. For a personal
install, the information is under HKEY_CURRENT_USER\Software\R-core\R which is seen by both
32-bit and 64-bit applications and so records the last install of either architecture. To circumvent
this, there are locations Software\R-core\R32 and Software\R-core\R64 which always refer
to one architecture.

When R is installed and recording is not disabled then two string values are written at that
location for keys InstallPath and Current Version, and these keys are removed when R is
uninstalled. To allow information about other installed versions to be retained, there is also
a key named something like 3.0.0 or 3.0.0 patched or 3.1.0 Pre-release with a value for
InstallPath.

So a comprehensive algorithm to search for R_HOME is something like

e Decide which of personal or administrative installs should have precedence. There are argu-
ments both ways: we find that with roaming profiles that HKEY_CURRENT_USER\Software
often gets reverted to an earlier version. Do the following for one or both of HKEY_CURRENT_
USER and HKEY_LOCAL_MACHINE.

4 An attempt to use only threads in the late 1990s failed to work correctly under Windows 95, the predominant
version of Windows at that time.

Chapter 8: Linking GUIs and other front-ends to R 156

o If the desired architecture is known, look in Software\R-core\R32 or
Software\R-core\R64, and if that does not exist or the architecture is immate-
rial, in Software\R-core\R.

e If key InstallPath exists then this is R_HOME (recorded using backslashes). If it does
not, look for version-specific keys like 2.11.0 alpha, pick the latest (which is of itself a
complicated algorithm as 2.11.0 patched > 2.11.0 > 2.11.0 alpha > 2.8.1) and use its
value for InstallPath.

Prior to R 2.12.0 R.d11 and the various front-end executables were in R_HOME\bin, but they
are now in R_HOME\bin\i386 or R_HOME\bin\x64. So you may need to arrange to look first in
the architecture-specific subdirectory and then in R_HOME\bin.

Function and variable index

Function and variable index

G 92
LCall 104, 113
Extermal L. 104, 113
Fortran ... 92
Last.lib .o 38
conAttach 38
onDetach ... 38
onLoad. ... e 38
onUnload . ..o e 38
.Random.seed............. ... 128
\
NACTOIYI .« . vv ettt e et 62
NBLEAS . ottt 54
\arguments 56
Nauthor. 57
NBOLd . o 60
At et 62
N COAE . ettt 61
\Commanduuit e 62
NCONCEPL oot it it 65
T et 60
Ndegn. ..o 63
\describe ... 62
\description........cooiiiiiiiiiiii 55
Ndetails ..oooiii 56
R i 62
NQONETrUN ..o 57
\dontshow ...t 57
NQOtS .ttt 64
NAQUOtE. ..t 60
Nemail. ... 61
Nemph. ... 60
I . ottt 65
\enumerateoooviiiiiiiin 62
DIV .« v vttt et e 62
AT | 63
\eXamPlesS . ..ot 57
NFdgUTE. oo 64
A T = PP 61
Nformat........coiiiii 59
Nhref 61
N 66
NifelsSe. oo 66
\itemize ... 62
R o 61
NKEYWOrd .. o.viti i 58
N T 64
ALK . et 63
\method. ...t 55
NDAME . . ettt 54
\newcommanduuiiiiiiii e 67
DO . ettt 57
Noption. ..o 62
\OUL o ot 66
[<)< 61
\preformatted..........c.ooiiiiiiiiii 61
AR L 64

ARAOPES. .ot 66

157
\Teferencesoovii i 57
\renewcommand.uoeeiiiiiinaaniiiin.n 67
\S3method ... 56
NS@IMP . .ttt 61
\SeCtion ..o 60
\SEEALSO .ottt 57
1S54 o PP 66
A SOUTCE . ettt ittt 59
\SQUOtE. .ot 60
\SELONG. .ottt 60
NtaDULAT . oottt 62
R = 55
UL . 61
NUSAEE . o ottt et 55
AVALUE . o ottt 56
A2 ol PPt 61
VeI . e 61
A
AlloCVeCtor . .. vt i e 106
AUTHORS . . .ot e e e 13
B
bessel _d ... 132
bessel _J ... 132
bessel K ...t 132
beSSELl Y 132
Deta. e 132
BLAS _LIBS ..ttt e e et 19
DL OWS T . o ettt 78
C
CalloC . ittt e 127
CAR o 114
(0403 114
CgMIn. 135
ChOOS . ottt 132
CITATION ...t 13, 50
COPYRIGHTS. ..o\ttt et e e e 5, 13
COSPi....oooiiii i 133
CPSOT L. oo 137
D
debug.............. 81
AEDUGEET ... 80
defineVar i 111
digammal 132
dump.frames...........coiiiiiiiiiii 80
duplicate........coiiiiiiiii 112
dyn.loadl 94
dyn.unload...........l 94
E
@XP_TANA ..ottt 128
exXpml. 133
@XPOT L ..o 36

Function and variable index

exportClasses............oiiiiiiiiiiii... 41
exportClassPattern.................oooiiiii.n. 41
exportMethods............., 41
exportPattern...........l 37, 41
F

FALSE . ..o 134
findInterval............. i 138
findVar 111
FLIBS .. 19
fmax2. 133
fmin2. 133
fprec.... ... 134
Free...o i 127
fround.......... ... 134
8= P 134
ftrunc..... ... 134
G

gammafn ... 132
getorture ... 83
getAttrib..... 108
getCharCE.........l 125
GetRNGstate...........oiiiiiiiiiiiiinn, 128
I

IMaX2. .o 133
Imin2. ... 133
import 37
importClassesFrom............c.ooviiiiinnne... 41
importFrom. 37
importMethodsFrom.............................. 41
install ... 109
APSOTt. 137
IONA 115, 129
ISNAN .. 115, 129
L

LAPACK_LIBS ... e 19
Ibeta. ... 132
TDEGSD. .ttt 135
1Ch0OSE ittt 132
Igammalp ... 133
Igammafnoo i 132
library.dynam.............. ...t 11, 94
1ogIp. i 133
1ogIPEXD . oo ittt 133
1ogIpmX .o 133
logspace_add............oooiiiiiiiiii.L. 133
logspace_SUb. ...ttt 133
M

M E 134
M PL . 134
mkChar......... ... 110
mkCharCE 125
mkCharLen............oi i, 110
mkCharLenCE............... it 125

158
N
NA _REAL .. 129
NEWS . RA. ..ot 13
11115 o P 135
NOYM_Tand . ..ot ittt ettt e et 128
O
OBIECTS . oot e 20, 99
P
pentagamma......... ..ottt 132
PKG_CFLAGS .. it e e 99
PKG_CPPFLAGSt 99
PKG _CXXFLAGS . ..ttt 99
PKG_FCFLAGS . .. o e e 99
PKG _FFLAGS .. it e e 99
PRG _LIBS .ottt e 99
PKG_OBJCFLAGSottt e e 99
PKG_OBJCXXFLAGS . ..ottt e e e 99
PLOMPL . . 54
PROTECT .ottt ettt e e i 105
PROTECT _WITH_INDEX....... ..ot 106
psSigamma............. ...l 132
PutRNGstate........ooviiiiiniin i 128
Q
QSOTt3. ... 137
QSOTEA . 137
R
RCMD build.......viniiiii it 31
RCMD CheCK. . .oiiiii ittt 28
RCMD config..............oiiiiiii 17
RCMDRA2pdf....... ..o 68
RCMD RACONV. ..ottt ittt ie e eie e e enns 68
RCMD SHLIB. ...ttt et e e 99
RCMD Stangle, 68
RCMD SWeaVE . ..ttt it it 68
R_addhistory.......ccoiuiiiiiiiiiiiiiiiinnn 149
R_@lloC .o e 126
RBUSY......ooi 148
R_ChooseFile.........ooiiiininiiiiiiiiianan., 149
R_CleanUpc.cuouuuuiiiiiiiiiiiiiiiiiiiinns 149
R_ClearErrConsolecoviuiiiiununenennn. 148
R CSOTL .t e 137
R_dataentry........... il 150
R_dataviewer..........oouuiiiineiineinnennnennns 150
R_EditFile....... ... i, 149
R_EditFiles..... ..o 149
R_ExpandFileName...............ooiiiiiinnnn.. 138
R_FINITE et 129
R_FlushConsolecoiiiiiiinininnnnnnn. 148
R_GetCCallableciririiiiinananan.. 98
R_GetCurrentSrcref.............ccoiviiniinnn... 122
R_GetSrcFilenameo, 122
R_INLINE ...t et 139
R_IsNaN ... e 129
R_dsSOrt .o 137
R_LIBRARY_DIR...... .0 18
R_loadhistory................l 149

Function and variable index

Romax_col ...t 137
R_NegInf i 129
R_orderVector....... ..o, 137
R_PACKAGE_DIR...... ..ot 18
R_PACKAGE_NAME i 18
R_ParseVector........ovuiiiiniiiinnnnn, 122
R_PosInf e 129
R opoW. .o 133
Ropow_di......ooooiiiiiiiiiiiiiiii 133
R_PreserveObject 106
R_gsort 137
R_gsort_T ... 137
R_QSOTt_dnt.....cooiuiiiiiiiii i 137
R_gsort_int_I........... i, 137
R_ReadConsole.ooiiiiinini i, 148
R_RegisterCCallable............................ 98
R_registerRoutines.....................ooun. 96
R_ReleaseObjectt 106
R_ResetConsolecoviiiiniinininnnnn.. 148
RoTSOTt ot 137
R_savehistory................ 149
R_selectlist........oiiiiiinii i, 150
R_ShowFiles........ooiiiriniii i, 149
R_ShowMessage...................ooiiiiiii... 148
R_Srcref ... o 122
R_Suicide........ciiiiiii i 149
R_tmpnam...............ol 138
R_tmpnam2........... i 138
R_Version......ooviiiiniiiii i 139
R_WriteConsolecciiiiiiinininennnnn.. 148
R_WriteConsoleExXcciviiniiiiniininenan.. 148
Rdgagi.........coii 136
Rdgags. ... 136
RealloC ..o 127
=Yoo = ol PPt 81
reEnc. 125
REprintf i 129
REPROTECT ..ottt et e e 106
REvprintfl 129
TEVSOTE oottt ettt 137
RicCOnV. ..ot 138
Riconv_cCloSe.ottt 139
Riconv_open.............o ool 138
Rprintf 129
Rprof 70, 72
Rprofmem 73

TPSOrt. . 137

159
rsort_with_index.............................. 137
Rvprintf 129
S
S _@l10C ittt 126
S realloC ..t 126
S3methodoi i 37
SAFE _FFLAGS ... e 19
SAMAIL. « vttt e 135
Seed_AM ..t e 128
seed_0oUt . ..ot 128
SetAttrib 108
SetVar. .. e 111
Sign ... 134
sinpi......o i 133
summaryRprof.......... il 72
SYSTeM. .o 92
system.time............l 92
system2....... ... 92
T
tanpi. . 133
tetragamma..........................LL 132
7 - o TP 82
traceback 79
BrACEMEIM . .ottt ettt s 73
translateChar..........., 125
translateCharUTF8.............., 125
trigammaooiiiiiiiiiiiiiiiiiiii 132
TRUE . o e 134
U
undebug................ 82
unif_rand......... . .. 128
UNPROTECT . ..ottt e e e 105
UNPROTECT_PTR.ttt 106
UNELACEMEM . . .ttt t ettt ettt ie et ie e 73
useDynLib........ ool 38
V
VMaXget ... 126
VIAXSEE « ittt ettt e e 126
21111 s R 135

Concept index

Concept index

Anstall_extras file ... oo 34
Rbuildignore file............. ...l 31
Rinstignore file........l 13

\

\INKS4class . v 63

A

Allocating storage.ccouviiiinininia.. 106
Attributes 107

B

Bessel functions. ..., 132
Beta function........... ... i 132
Building binary packages...................... ... 32
Building source packages............. 31

C

C++ code, interfacing. ...t 100
Calling C from FORTRAN and vice versa....... 130
Checking packages ...t 28
citation ... 13, 50
ClaSSES « v vt ettt e e 109
cleanup file......... oo 3
conditionals......... 66
configure file i 3
Copying objects. . ..ot 112
CRAN . 3
Creating packages..........cooiiiiiiiiiiiii . 2
Creating shared objects 99
Cross-references in documentation................ 63
cumulative hazard oo L 131

D

Debugging 88
DESCRIPTION file. ..o 4
Details of R types...........ooooiiiiiiiiiiL. 106
Distribution functions from C................... 131
Documentation, writing 53
Dynamic loading oL 94
dynamic pagesovviiiiiiiii 66

E

Editing Rd files o 69
encodingiiii 67
Error handling from C.......................... 128
Error handling from FORTRAN................. 128
Evaluating R expressions from C................ 115
external pointer.............. ... i 123

F

Figures in documentation 64

160
finalizer...... ... 123
Finding variables..........o i 110
Gamma function.............o 132
Garbage collection oo 105
Generic functionso o il 143
H
handling character data......................... 110
Handling lists.............o.oo it 109
Handling R objects in C........................ 104
|
IEEE special values 115, 129
INDEX file. ..ot 11
Indices.o 65
Inspecting R objects when debugging............. 89
integration............ ... il 136
Interfaces to compiled code.................. 92, 113
Interfacing C++ code........., 100
Interrupts.........ooo i 139
L
LICENCE file. ..o 8
LICENSE file 8
Lists and tables in documentation................ 62
M
Marking text in documentation................... 60
Mathematics in documentation................... 63
Memory allocation from C...................... 126
MEMOTY USE. ..ottt 72
Method functions ... 143
Missing values................cviiiiiin... 115, 129
N
TNATNESPACES « o v vttt et 36
TIEWS . o et ettt ettt e e e 13
Numerical analysis subroutines from C.......... 130
Numerical derivatives.................... ... 118
OpenMP ... 21, 139
Operating System access.o.vveenirrreennnnn. 92
optimization............... ... il 135
P
Package builder oL 31
Package structure L 3
Package subdirectories ol 11
Packages ... 2

Concept index

Parsing R code from C.......................... 121
Platform-specific documentation.................. 65
Printing from C........o 129
Printing from FORTRAN 129
Processing Rd format 68
Profiling...........oo i 70, 72, 73

R

Random numbersin C..................... 128, 131
Random numbers in FORTRAN 130
Registering native routines....................... 95

S

Setting variables.......... oot 110
Sort functions from C........................... 136
SWEAVE . ettt 33

161
T
tarballs 31
Tidying Rcodet 70
U
user-defined macros 67
Vv
Version information from C 139
vignettes. ... i 33
Visibility ..o 140
weak reference 123

Z

Zero-finding. ... 117

	Acknowledgements
	Creating R packages
	Package structure
	The DESCRIPTION file
	Licensing
	Package Dependencies
	The INDEX file
	Package subdirectories
	Data in packages
	Non-R scripts in packages

	Configure and cleanup
	Using Makevars
	OpenMP support
	Using pthreads
	Compiling in sub-directories

	Configure example
	Using F95 code
	Using C++11 code

	Checking and building packages
	Checking packages
	Building package tarballs
	Building binary packages

	Writing package vignettes
	Encodings and vignettes
	Non-Sweave vignettes

	Package namespaces
	Specifying imports and exports
	Registering S3 methods
	Load hooks
	useDynLib
	An example
	Namespaces with S4 classes and methods

	Writing portable packages
	PDF size
	Check timing
	Encoding issues
	Portable C and C++ code
	Binary distribution

	Diagnostic messages
	Internationalization
	C-level messages
	R messages
	Preparing translations

	CITATION files
	Package types
	Frontend

	Services

	Writing R documentation files
	Rd format
	Documenting functions
	Documenting data sets
	Documenting S4 classes and methods
	Documenting packages

	Sectioning
	Marking text
	Lists and tables
	Cross-references
	Mathematics
	Figures
	Insertions
	Indices
	Platform-specific documentation
	Conditional text
	Dynamic pages
	User-defined macros
	Encoding
	Processing documentation files
	Editing Rd files

	Tidying and profiling R code
	Tidying R code
	Profiling R code for speed
	Profiling R code for memory use
	Memory statistics from Rprof
	Tracking memory allocations
	Tracing copies of an object

	Profiling compiled code
	Linux
	sprof
	oprofile and operf

	Solaris
	OS X

	Debugging
	Browsing
	Debugging R code
	Checking memory access
	Using gctorture
	Using valgrind
	Using the Address Sanitizer
	Using the Undefined Behaviour Sanitizer
	Other analyses with `clang'
	Using `Dr. Memory'
	Fortran array bounds checking

	Debugging compiled code
	Finding entry points in dynamically loaded code
	Inspecting R objects when debugging

	System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Registering native routines
	Speed considerations
	Linking to native routines in other packages

	Creating shared objects
	Interfacing C++ code
	Fortran I/O
	Linking to other packages
	Unix-alikes
	Windows

	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	Handling lists
	Handling character data
	Finding and setting variables
	Some convenience functions
	Semi-internal convenience functions

	Named objects and copying

	Interface functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R expressions from C
	Zero-finding
	Calculating numerical derivatives

	Parsing R code from C
	Accessing source references

	External pointers and weak references
	An example

	Vector accessor functions
	Character encoding issues

	The R API: entry points for C code
	Memory allocation
	Transient storage allocation
	User-controlled memory

	Error handling
	Error handling from FORTRAN

	Random number generation
	Missing and IEEE special values
	Printing
	Printing from FORTRAN

	Calling C from FORTRAN and vice versa
	Numerical analysis subroutines
	Distribution functions
	Mathematical functions
	Numerical Utilities
	Mathematical constants

	Optimization
	Integration
	Utility functions
	Re-encoding
	Allowing interrupts
	Platform and version information
	Inlining C functions
	Controlling visibility
	Using these functions in your own C code
	Organization of header files

	Generic functions and methods
	Adding new generics

	Linking GUIs and other front-ends to R
	Embedding R under Unix-alikes
	Compiling against the R library
	Setting R callbacks
	Registering symbols
	Meshing event loops
	Threading issues

	Embedding R under Windows
	Using (D)COM
	Calling R.dll directly
	Finding R_HOME

	Function and variable index
	Concept index

