R Internals

Version 3.1.1 (2014-07-10)

R Core Team

This manual is for R, version 3.1.1 (2014-07-10).
Copyright (© 1999-2013 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

1 R Internal Structures................, 1
1L S X P S o 1
111 SEX P Y PES. .o 1
1.1.2 Rest of header. 2
1.1.3 The ‘data’. ..o 3
1.1.4 Allocation ClasSSESttt e 5
1.2 Environments and variable lookup o i i 5
1.2.1 Search paths. 6
1.2.2 NAmMESPACES o oottt et 6
1.2.3 Hash table. 6
1.3 AT DULES . . o 7
R 0} 017> 1= PP 8
1.5 Argument evaluation 9
1.5.1 MSSIIZNESS. « o oottt et e 10
1.5.2 Dot-dot-dot argumentsooiiiiii e 11
1.6 AUtoprintingo 11
1.7 The write barrier and the garbage collector i, 12
1.8 Serialization Formats e 12
1.9 Encodings for CHARSXPS. ...t e 13
1.10 The CHARSXP cacheo e 14
1.11 Warnings and €ITOTS.uttt ettt ettt e 15
112 4 0D OOt . o ettt e 15
1.12.1 Representation of S4 objects. ... 15
112,20 54 ClasseS . oo vt e 16
1.12.3 SAmethods ... 16
1.12.4 Mechanics of S4 dispatch 16
1.13 Memory allocators e 17
1.13.1 Internals of R_alloc. oo 19
1.14 Internal use of global and base environments............... 19
1.14.1 Base environmentttt 19
1.14.2 Global environmentttt 19
115 MoOdUles ... 19
116 Visibility . . .o 20
1.16.1 Hiding C entry points e 20
1.16.2 Variables in Windows DLLS 20
1.17 Lazy loading 21
2 .Internal vs .Primitive.......... 22
2.1 Special Primitives 24
2.2 Special internals. ... 24
2.3 Prototypes for primitivest e 25
2.4 Adding a primitive 25
3 Internationalization in the R sources....................... 27
3.1 R GO .o e 27
3.2 Main € COAE ... vt it 27

3.3 Windows-GUI-specific code.ot e 27

3.4 O8 X GUI o 28
3.5 Updating. ... ovo i 28

4 Structure of an Installed Package........................... 29
4.1 Metadaba . ..vvve e e 29
4.2 HelD ot 30

5 Files. ... 31
6 Graphics........ 32
6.1 Graphics Devicesui e e 33
6.1.1 Device StruCtUTreS . ..ottt e e 33
6.1.2 Device capabilities. 35
6.1.3 Handling textttt 35
6.1.4 Conventionst 37

0.1.5 MOde . i e 38

6.1.6 Graphics eVentst 38
6.1.7 Specific deviCes 38
0 D G 1 P 38

6.1.7.2 WIndOws() ..o oovie 39

6.2 COlOULS . .ttt e 40
6.3 Base graphicsoo e 41
6.3.1 Arguments and parameters e 42

6.4 Grid graphicso 42
7 GUI consoles, 43
0 T 2 P ' o T 43
8 00lo 45
9 Rcoding standards................. 51
10 Testing Rcode....... i, 53
11 Useof TeX dialects.............. 54
12 Current and future directions.............................. 55
12,1 LONE VECHOTS « « o o e vttt e ettt e e e e 55
12.2 0 B4-DIb By PES . vttt 55
12.3 Large matriCesottt 56
Function and variable index.............. 57

Concept indexX i 58

Chapter 1: R Internal Structures 1

1 R Internal Structures

This chapter is the beginnings of documentation about R internal structures. It is written for
the core team and others studying the code in the src/main directory.

It is a work-in-progress and should be checked against the current version of the source code.
Versions for R 2.x.y contain historical comments about when features were introduced: this
version is for the 3.x.y series.

1.1 SEXPs

What R users think of as wvariables or objects are symbols which are bound to a value. The
value can be thought of as either a SEXP (a pointer), or the structure it points to, a SEXPREC
(and there are alternative forms used for vectors, namely VECSXP pointing to VECTOR_SEXPREC
structures). So the basic building blocks of R objects are often called nodes, meaning SEXPRECs
or VECTOR_SEXPRECs.

Note that the internal structure of the SEXPREC is not made available to R Extensions: rather
SEXP is an opaque pointer, and the internals can only be accessed by the functions provided.

Both types of node structure have as their first three fields a 32-bit sxpinfo header and then
three pointers (to the attributes and the previous and next node in a doubly-linked list), and
then some further fields. On a 32-bit platform a node! occupies 28 bytes: on a 64-bit platform
typically 56 bytes (depending on alignment constraints).

The first five bits of the sxpinfo header specify one of up to 32 SEXPTYPEs.

1.1.1 SEXPTYPEs

Currently SEXPTYPEs (0:10 and 13:25 are in use. Values 11 and 12 were used for internal factors
and ordered factors and have since been withdrawn. Note that the SEXPTYPE numbers are stored
in saved objects and that the ordering of the types is used, so the gap cannot easily be reused.

no SEXPTYPE Description

0 NILSXP NULL

1 SYMSXP symbols

2 LISTSXP pairlists

3 CLOSXP closures

4 ENVSXP environments

5 PROMSXP promises

6 LANGSXP language objects

7 SPECIALSXP special functions

8 BUILTINSXP builtin functions

9 CHARSXP internal character strings
10 LGLSXP logical vectors

13 INTSXP integer vectors

14 REALSXP numeric vectors

15 CPLXSXP complex vectors

16 STRSXP character vectors
17 DOTSXP dot-dot-dot object
18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector
21 BCODESXP byte code

1

strictly, a SEXPREC node; VECTOR_SEXPREC nodes are slightly smaller but followed by data in the node.

Chapter 1: R Internal Structures 2

22 EXTPTRSXP external pointer

23 WEAKREFSXP weak reference

24 RAWSXP raw vector

25 S4SXP S4 classes not of simple type

Many of these will be familiar from R level: the atomic vector types are LGLSXP, INTSXP,
REALSXP, CPLXSP, STRSXP and RAWSXP. Lists are VECSXP and names (also known as symbols) are
SYMSXP. Pairlists (LISTSXP, the name going back to the origins of R as a Scheme-like language)
are rarely seen at R level, but are for example used for argument lists. Character vectors are
effectively lists all of whose elements are CHARSXP, a type that is rarely visible at R level.

Language objects (LANGSXP) are calls (including formulae and so on). Internally they are
pairlists with first element a reference? to the function to be called with remaining elements the
actual arguments for the call (and with the tags if present giving the specified argument names).
Although this is not enforced, many places in the code assume that the pairlist is of length one
or more, often without checking.

Expressions are of type EXPRSXP: they are a vector of (usually language) objects most often
seen as the result of parse().

The functions are of types CLOSXP, SPECIALSXP and BUILTINSXP: where SEXPTYPESs are stored
in an integer these are sometimes lumped into a pseudo-type FUNSXP with code 99. Functions
defined via function are of type CLOSXP and have formals, body and environment.

The SEXPTYPE S4SXP is for S4 objects which do not consist solely of a simple type such as
an atomic vector or function.

1.1.2 Rest of header
The sxpinfo header is defined as a 32-bit C structure by

struct sxpinfo_struct {

SEXPTYPE type 5; /x discussed above */

unsigned int obj : 1; /* is this an object with a class attribute? */
unsigned int named : 2; /* used to control copying */

unsigned int gp : 16; /* general purpose, see below */

unsigned int mark ; /* mark object as ‘in use’ in GC */
unsigned int debug :
unsigned int trace :
unsigned int spare :
unsigned int gcgen : ; /% generation for GC */

unsigned int gccls : ; /% class of node for GC */

};, /% Tot: 32 */

The debug bit is used for closures and environments. For closures it is set by debug() and
unset by undebug(), and indicates that evaluations of the function should be run under the
browser. For environments it indicates whether the browsing is in single-step mode.

; /* debug once */

O I e e

The trace bit is used for functions for trace() and for other objects when tracing duplica-
tions (see tracemem).

The spare bit is used for closures to mark them for one time debugging.

The named field is set and accessed by the SET_NAMED and NAMED macros, and take values 0,
1 and 2. R has a ‘call by value’ illusion, so an assignment like

b <- a

appears to make a copy of a and refer to it as b. However, if neither a nor b are subsequently
altered there is no need to copy. What really happens is that a new symbol b is bound to the

2 a pointer to a function or a symbol to look up the function by name, or a language object to be evaluated to
give a function.

Chapter 1: R Internal Structures 3

same value as a and the named field on the value object is set (in this case to 2). When an
object is about to be altered, the named field is consulted. A value of 2 means that the object
must be duplicated before being changed. (Note that this does not say that it is necessary to
duplicate, only that it should be duplicated whether necessary or not.) A value of 0 means that
it is known that no other SEXP shares data with this object, and so it may safely be altered. A
value of 1 is used for situations like

dim(a) <- c(7, 2)
where in principle two copies of a exist for the duration of the computation as (in principle)
a <- ‘dim<-‘(a, c(7, 2))
but for no longer, and so some primitive functions can be optimized to avoid a copy in this case.

The gp bits are by definition ‘general purpose’. We label these from 0 to 15. Bits 0-5 and
bits 14-15 have been used as described below (mainly from detective work on the sources).

The bits can be accessed and set by the LEVELS and SETLEVELS macros, which names appear
to date back to the internal factor and ordered types and are now used in only a few places in
the code. The gp field is serialized/unserialized for the SEXPTYPEs other than NILSXP, SYMSXP
and ENVSXP.

Bits 14 and 15 of gp are used for ‘fancy bindings’. Bit 14 is used to lock a binding or an
environment, and bit 15 is used to indicate an active binding. (For the definition of an ‘active
binding’ see the header comments in file src/main/envir.c.) Bit 15 is used for an environment
to indicate if it participates in the global cache.

The macros ARGUSED and SET_ARGUSED are used when matching actual and formal function
arguments, and take the values 0, 1 and 2.

The macros MISSING and SET_MISSING are used for pairlists of arguments. Four bits are
reserved, but only two are used (and exactly what for is not explained). It seems that bit 0
is used by matchArgs to mark missingness on the returned argument list, and bit 1 is used to
mark the use of a default value for an argument copied to the evaluation frame of a closure.

Bit 0 is used by macros DDVAL and SET_DDVAL. This indicates that a SYMSXP is one of the
symbols ..n which are implicitly created when ... is processed, and so indicates that it may
need to be looked up in a DOTSXP.

Bit 0 is used for PRSEEN, a flag to indicate if a promise has already been seen during the
evaluation of the promise (and so to avoid recursive loops).

Bit 0 is used for HASHASH, on the PRINTNAME of the TAG of the frame of an environment. (This
bit is not serialized for CHARSXP objects.)

Bits 0 and 1 are used for weak references (to indicate ‘ready to finalize’, ‘finalize on exit’).
Bit 0 is used by the condition handling system (on a VECSXP) to indicate a calling handler.
Bit 4 is turned on to mark S4 objects.

Bits 1, 2, 3, 5 and 6 are used for a CHARSXP to denote its encoding. Bit 1 indicates that
the CHARSXP should be treated as a set of bytes, not necessarily representing a character in any
known encoding. Bits 2, 3 and 6 are used to indicate that it is known to be in Latin-1, UTF-8
or ASCII respectively.

Bit 5 for a CHARSXP indicates that it is hashed by its address, that is NA_STRING or is in the
CHARSXP cache (this is not serialized). Only exceptionally is a CHARSXP not hashed, and this
should never happen in end-user code.

1.1.3 The ‘data’

A SEXPREC is a C structure containing the 32-bit header as described above, three pointers (to
the attributes, previous and next node) and the node data, a union

Chapter 1: R Internal Structures 4

union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp,
struct listsxp_struct listsxp;
struct envsxp_struct envsxp;
struct closxp_struct closxp;
struct promsxp_struct promsxp;
} ou;
All of these alternatives apart from the first (an int) are three pointers, so the union occupies
three words.

The vector types are RAWSXP, CHARSXP, LGLSXP, INTSXP, REALSXP, CPLXSXP, STRSXP, VECSXP,
EXPRSXP and WEAKREFSXP. Remember that such types are a VECTOR_SEXPREC, which again
consists of the header and the same three pointers, but followed by two integers giving the
length and ‘true length™® of the vector, and then followed by the data (aligned as required: on
most 32-bit systems with a 24-byte VECTOR_SEXPREC node the data can follow immediately after
the node). The data are a block of memory of the appropriate length to store ‘true length’
elements (rounded up to a multiple of 8 bytes, with the 8-byte blocks being the ‘Vcells’ referred
in the documentation for gc()).

The ‘data’ for the various types are given in the table below. A lot of this is interpretation,
i.e. the types are not checked.

NILSXP There is only one object of type NILSXP, R_NilValue, with no data.

SYMSXP Pointers to three nodes, the name, value and internal, accessed by PRINTNAME (a
CHARSXP), SYMVALUE and INTERNAL. (If the symbol’s value is a .Internal function,
the last is a pointer to the appropriate SEXPREC.) Many symbols have SYMVALUE
R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NULL) and TAG (a SYMSXP or
NULL).

CLOSXP Pointers to the formals (a pairlist), the body and the environment.

ENVSXP Pointers to the frame, enclosing environment and hash table (NULL or a VECSXP). A
frame is a tagged pairlist with tag the symbol and CAR the bound value.

PROMSXP Pointers to the value, expression and environment (in which to evaluate the expres-
sion). Once an promise has been evaluated, the environment is set to NULL.

LANGSXP A special type of LISTSXP used for function calls. (The CAR references the function
(perhaps via a symbol or language object), and the CDR the argument list with tags
for named arguments.) R-level documentation references to ‘expressions’ / ‘language
objects’ are mainly LANGSXPs, but can be symbols (SYMSXPs) or expression vectors
(EXPRSXPs).

SPECIALSXP
BUILTINSXP
An integer giving the offset into the table of primitives/.Internals.

CHARSXP length, truelength followed by a block of bytes (allowing for the nul terminator).

LGLSXP
INTSXP length, truelength followed by a block of C ints (which are 32 bits on all R
platforms).

3 This is almost unused. The only current use is for hash tables of environments (VECSXPs), where length is
the size of the table and truelength is the number of primary slots in use, and for the reference hash tables
in serialization (VECSXPs), where truelength is the number of slots in use.

Chapter 1: R Internal Structures 5

REALSXP length, truelength followed by a block of C doubles.

CPLXSXP length, truelength followed by a block of C99 double complexs.

STRSXP length, truelength followed by a block of pointers (SEXPs pointing to CHARSXPS).
DOTSXP A special type of LISTSXP for the value bound to a . . . symbol: a pairlist of promises.
ANYSXP This is used as a place holder for any type: there are no actual objects of this type.

VECSXP
EXPRSXP length, truelength followed by a block of pointers. These are internally identical
(and identical to STRSXP) but differ in the interpretations placed on the elements.

BCODESXP For the ‘byte-code’ objects generated by the compiler.

EXTPTRSXP
Has three pointers, to the pointer, the protection value (an R object which if alive
protects this object) and a tag (a SYMSXP?).

WEAKREFSXP
A WEAKREFSXP is a special VECSXP of length 4, with elements ‘key’, ‘value’,
‘finalizer’ and ‘next’. The ‘key’ is NULL, an environment or an external pointer,
and the ‘finalizer’ is a function or NULL.

RAWSXP length, truelength followed by a block of bytes.

S4SXP two unused pointers and a tag.

1.1.4 Allocation classes

As we have seen, the field gccls in the header is three bits to label up to 8 classes of nodes.
Non-vector nodes are of class 0, and ‘small’ vector nodes are of classes 1 to 5, with a class for
custom allocator vector nodes 6 and ‘large’ vector nodes being of class 7. The ‘small’ vector
nodes are able to store vector data of up to 8, 16, 32, 64 and 128 bytes: larger vectors are
malloc-ed individually whereas the ‘small’ nodes are allocated from pages of about 2000 bytes.
Vector nodes allocated using custom allocators (via allocVector3) are not counted in the gc
memory usage statistics since their memory semantics is not under R’s control and may be
non-standard (e.g., memory could be partially shared across nodes).

1.2 Environments and variable lookup

What users think of as ‘variables’ are symbols which are bound to objects in ‘environments’.
The word ‘environment’ is used ambiguously in R to mean either the frame of an ENVSXP (a
pairlist of symbol-value pairs) or an ENVSXP, a frame plus an enclosure.

There are additional places that ‘variables’ can be looked up, called ‘user databases’ in
comments in the code. These seem undocumented in the R sources, but apparently refer to the
RObjectTable package at http://www.omegahat.org/R0bjectTables/.

The base environment is special. There is an ENVSXP environment with enclosure the empty
environment R_EmptyEnv, but the frame of that environment is not used. Rather its bindings
are part of the global symbol table, being those symbols in the global symbol table whose values
are not R_UnboundValue. When R is started the internal functions are installed (by C code)
in the symbol table, with primitive functions having values and .Internal functions having
what would be their values in the field accessed by the INTERNAL macro. Then .Platform and
.Machine are computed and the base package is loaded into the base environment followed by
the system profile.

The frames of environments (and the symbol table) are normally hashed for faster access
(including insertion and deletion).

http://www.omegahat.org/RObjectTables/

Chapter 1: R Internal Structures 6

By default R maintains a (hashed) global cache of ‘variables’ (that is symbols and their
bindings) which have been found, and this refers only to environments which have been marked
to participate, which consists of the global environment (aka the user workspace), the base
environment plus environments* which have been attached. When an environment is either
attached or detached, the names of its symbols are flushed from the cache. The cache is used
whenever searching for variables from the global environment (possibly as part of a recursive
search).

1.2.1 Search paths

S has the notion of a ‘search path’: the lookup for a ‘variable’ leads (possibly through a series of
frames) to the ‘session frame’ the ‘working directory’ and then along the search path. The search
path is a series of databases (as returned by search()) which contain the system functions (but
not necessarily at the end of the path, as by default the equivalent of packages are added at the
end).

R has a variant on the S model. There is a search path (also returned by search()) which
consists of the global environment (aka user workspace) followed by environments which have
been attached and finally the base environment. Note that unlike S it is not possible to attach
environments before the workspace nor after the base environment.

However, the notion of variable lookup is more general in R, hence the plural in the title
of this subsection. Since environments have enclosures, from any environment there is a search
path found by looking in the frame, then the frame of its enclosure and so on. Since loops
are not allowed, this process will eventually terminate: it can terminate at either the base
environment or the empty environment. (It can be conceptually simpler to think of the search
always terminating at the empty environment, but with an optimization to stop at the base
environment.) So the ‘search path’ describes the chain of environments which is traversed once
the search reaches the global environment.

1.2.2 Namespaces

Namespaces are environments associated with packages (and once again the base package is
special and will be considered separately). A package pkg with a namespace defines two envi-
ronments namespace: pkg and package: pkg: it is package: pkg that can be attached and form
part of the search path.

The objects defined by the R code in the package are symbols with bindings in the
namespace: pkg environment. The package:pkg environment is populated by selected sym-
bols from the namespace: pkg environment (the exports). The enclosure of this environment is
an environment populated with the explicit imports from other namespaces, and the enclosure of
that environment is the base namespace. (So the illusion of the imports being in the namespace
environment is created via the environment tree.) The enclosure of the base namespace is the
global environment, so the search from a package namespace goes via the (explicit and implicit)
imports to the standard ‘search path’.

The base namespace environment R_BaseNamespace is another ENVSXP that is special-cased.
It is effectively the same thing as the base environment R_BaseEnv except that its enclosure is
the global environment rather than the empty environment: the internal code diverts lookups
in its frame to the global symbol table.

1.2.3 Hash table

Environments in R usually have a hash table, and nowadays that is the default in new.env().
It is stored as a VECSXP where length is used for the allocated size of the table and truelength

4 Remember that attaching a list or a saved image actually creates and populates an environment and attaches
that.

Chapter 1: R Internal Structures 7

is the number of primary slots in use—the pointer to the VECSXP is part of the header of a SEXP
of type ENVSXP, and this points to R_NilValue if the environment is not hashed.

For the pros and cons of hashing, see a basic text on Computer Science.

The code to implement hashed environments is in src/main/envir.c. Unless set otherwise
(e.g. by the size argument of new.env()) the initial table size is 29. The table will be resized
by a factor of 1.2 once the load factor (the proportion of primary slots in use) reaches 85%.

The hash chains are stored as pairlist elements of the VECSXP: items are inserted at the front
of the pairlist. Hashing is principally designed for fast searching of environments, which are
from time to time added to but rarely deleted from, so items are not actually deleted but have
their value set to R_UnboundValue.

1.3 Attributes

As we have seen, every SEXPREC has a pointer to the attributes of the node (default R_NilValue).
The attributes can be accessed/set by the macros/functions ATTRIB and SET_ATTRIB, but such
direct access is normally only used to check if the attributes are NULL or to reset them. Otherwise
access goes through the functions getAttrib and setAttrib which impose restrictions on the
attributes. One thing to watch is that if you copy attributes from one object to another you
may (un)set the "class" attribute and so need to copy the object and S4 bits as well. There is
a macro/function DUPLICATE_ATTRIB to automate this.

Note that the ‘attributes’ of a CHARSXP are used as part of the management of the CHARSXP
cache: of course CHARSXP’s are not user-visible but C-level code might look at their attributes.

The code assumes that the attributes of a node are either R_NilValue or a pairlist of non-
zero length (and this is checked by SET_ATTRIB). The attributes are named (via tags on the
pairlist). The replacement function attributes<- ensures that "dim" precedes "dimnames" in
the pairlist. Attribute "dim" is one of several that is treated specially: the values are checked,
and any "names" and "dimnames" attributes are removed. Similarly, you cannot set "dimnames"
without having set "dim", and the value assigned must be a list of the correct length and with
elements of the correct lengths (and all zero-length elements are replaced by NULL).

The other attributes which are given special treatment are "names", "class", "tsp",
"comment" and "row.names". For pairlist-like objects the names are not stored as an attribute
but (as symbols) as the tags: however the R interface makes them look like conventional at-
tributes, and for one-dimensional arrays they are stored as the first element of the "dimnames"
attribute. The C code ensures that the "tsp" attribute is an REALSXP, the frequency is positive
and the implied length agrees with the number of rows of the object being assigned to. Classes
and comments are restricted to character vectors, and assigning a zero-length comment or class
removes the attribute. Setting or removing a "class" attribute sets the object bit appropriately.
Integer row names are converted to and from the internal compact representation.

Care needs to be taken when adding attributes to objects of the types with non-standard
copying semantics. There is only one object of type NILSXP, R_NilValue, and that should
never have attributes (and this is enforced in installAttrib). For environments, external
pointers and weak references, the attributes should be relevant to all uses of the object: it is for
example reasonable to have a name for an environment, and also a "path" attribute for those
environments populated from R code in a package.

When should attributes be preserved under operations on an object? Becker, Chambers &
Wilks (1988, pp. 144-6) give some guidance. Scalar functions (those which operate element-
by-element on a vector and whose output is similar to the input) should preserve attributes
(except perhaps class, and if they do preserve class they need to preserve the OBJECT and S4
bits). Binary operations normally call copyMostAttributes to copy most attributes from the
longer argument (and if they are of the same length from both, preferring the values on the

Chapter 1: R Internal Structures

first). Here ‘most’ means all except the names, dim and dimnames which are set appropriately

by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names, dim
On the other hand, subassignment generally
For

and dimnames which are reset as appropriate.
preserves such attributes even if the length is changed. Coercion drops all attributes.

example:

> x <- structure(1:8, names=letters[1:8], comm="a comment")

> x[]

abcdefgh
123456738
attr(,"comm")

[1] "a comment"

A\

x[1:3]
bc
2 3

a
1
>
> x
a
1

x[3] <- 3

bcdefgh
2345678

attr(,"comm"
[1] "a comment"
> x[9] <- 9

> X

abcdefgh
123456789
attr(,"comm")

[1] "a comment"

1.4 Contexts

Contexts are the internal mechanism used to keep track of where a computation has got to
(and from where), so that control-flow constructs can work and reasonable information can be

produced on error conditions (such as via traceback), and otherwise (the sys.xxx functions).

Execution contexts are a stack of C structs:

typedef struct RCNTXT {
struct RCNTXT #*nextcontext; /*
int callflag;
JMP_BUF cjmpbuf;
int cstacktop;
int evaldepth;

SEXP
SEXP
SEXP
SEXP
SEXP
SEXP
void
void
char

promargs;
callfun;
sysparent;

call;

cloenv;

conexit;

(*cend) (void *);
*cenddata;
*vmax ;

int intsusp;

SEXP

handlerstack;

/*
/%
/*
/*
/*
/%
/%
/*
/*
/*
/%
/%
/*
/*
/*

The next context up the chain */
The context ‘type’ */

C stack and register information */
Top of the pointer protection stack */
Evaluation depth at inception */
Promises supplied to closure */

The closure called */

Environment the closure was called from */
The call that effected this context */
The environment */

Interpreted on.exit code */

C on.exit thunk */

Data for C on.exit thunk */

Top of the R_alloc stack */
Interrupts are suspended */
Condition handler stack */

Chapter 1: R Internal Structures 9

SEXP restartstack; /* Stack of available restarts */
struct RPRSTACK *prstack; /* Stack of pending promises */
} RCNTXT, *context;

plus additional fields for the byte-code compiler. The ‘types’ are from

enum {
CTXT_TOPLEVEL = 0, /* toplevel context */
CTXT_NEXT 1, /* target for next */
CTXT_BREAK 2, /* target for break */
CTXT_LOOP 3, /* break or next target */
CTXT_FUNCTION = 4, /* function closure */
CTXT_CCODE 8, /x other functions that need error cleanup */

CTXT_RETURN = 12, /* return() from a closure */
CTXT_BROWSER = 16, /* return target on exit from browser */
CTXT_GENERIC = 20, /* rather, running an S3 method */
CTXT_RESTART = 32, /* a call to restart was made from a closure */
CTXT_BUILTIN = 64 /* builtin internal function */
};
where the CTXT_FUNCTION bit is on wherever function closures are involved.

Contexts are created by a call to begincontext and ended by a call to endcontext: code can
search up the stack for a particular type of context via findcontext (and jump there) or jump
to a specific context via R_JumpToContext. R_ToplevelContext is the ‘idle’ state (normally the
command prompt), and R_GlobalContext is the top of the stack.

Note that whilst calls to closures and builtins set a context, those to special internal functions
never do.

Dispatching from a S3 generic (via UseMethod or its internal equivalent) or calling
NextMethod sets the context type to CTXT_GENERIC. This is used to set the sysparent of the
method call to that of the generic, so the method appears to have been called in place of the
generic rather than from the generic.

The R sys.frame and sys.call functions work by counting calls to closures (type CTXT_
FUNCTION) from either end of the context stack.

Note that the sysparent element of the structure is not the same thing as sys.parent().
Element sysparent is primarily used in managing changes of the function being evaluated, i.e.
by Recall and method dispatch.

CTXT_CCODE contexts are currently used in cat(), load(), scan() and write.table() (to
close the connection on error), by PROTECT, serialization (to recover from errors, e.g. free buffers)
and within the error handling code (to raise the C stack limit and reset some variables).

1.5 Argument evaluation

As we have seen, functions in R come in three types, closures (SEXPTYPE CLOSXP), specials
(SPECIALSXP) and builtins (BUILTINSXP). In this section we consider when (and if) the actual
arguments of function calls are evaluated. The rules are different for the internal (special/builtin)
and R-level functions (closures).

For a call to a closure, the actual and formal arguments are matched and a matched call
(another LANGSXP) is constructed. This process first replaces the actual argument list by a list
of promises to the values supplied. It then constructs a new environment which contains the
names of the formal parameters matched to actual or default values: all the matched values are
promises, the defaults as promises to be evaluated in the environment just created. That envi-
ronment is then used for the evaluation of the body of the function, and promises will be forced
(and hence actual or default arguments evaluated) when they are encountered. (Evaluating a

Chapter 1: R Internal Structures 10

promise sets NAMED = 2 on its value, so if the argument was a symbol its binding is regarded as
having multiple references during the evaluation of the closure call.)

If the closure is an S3 generic (that is, contains a call to UseMethod) the evaluation process
is the same until the UseMethod call is encountered. At that point the argument on which to do
dispatch (normally the first) will be evaluated if it has not been already. If a method has been
found which is a closure, a new evaluation environment is created for it containing the matched
arguments of the method plus any new variables defined so far during the evaluation of the
body of the generic. (Note that this means changes to the values of the formal arguments in the
body of the generic are discarded when calling the method, but actual argument promises which
have been forced retain the values found when they were forced. On the other hand, missing
arguments have values which are promises to use the default supplied by the method and not
by the generic.) If the method found is a primitive it is called with the matched argument list
of promises (possibly already forced) used for the generic.

The essential difference® between special and builtin functions is that the arguments of spe-
cials are not evaluated before the C code is called, and those of builtins are. Note that being a
special /builtin is separate from being primitive or .Internal: quote is a special primitive, + is
a builtin primitive, cbind is a special .Internal and grep is a builtin .Internal.

Many of the internal functions are internal generics, which for specials means that they do
not evaluate their arguments on call, but the C code starts with a call to DispatchOrEval. The
latter evaluates the first argument, and looks for a method based on its class. (If S4 dispatch is
on, S4 methods are looked for first, even for S3 classes.) If it finds a method, it dispatches to
that method with a call based on promises to evaluate the remaining arguments. If no method
is found, the remaining arguments are evaluated before return to the internal generic.

The other way that internal functions can be generic is to be group generic. Most such
functions are builtins (so immediately evaluate all their arguments), and all contain a call to
the C function DispatchGeneric. There are some peculiarities over the number of arguments
for the "Math" group generic, with some members allowing only one argument, some having
two (with a default for the second) and trunc allows one or more but the default method only
accepts one.

1.5.1 Missingness

Actual arguments to (non-internal) R functions can be fewer than are required to match the
formal arguments of the function. Having unmatched formal arguments will not matter if the
argument is never used (by lazy evaluation), but when the argument is evaluated, either its
default value is evaluated (within the evaluation environment of the function) or an error is
thrown with a message along the lines of

argument "foobar" is missing, with no default

Internally missingness is handled by two mechanisms. The object R_MissingArg is used to
indicate that a formal argument has no (default) value. When matching the actual arguments
to the formal arguments, a new argument list is constructed from the formals all of whose values
are R_MissingArg with the first MISSING bit set. Then whenever a formal argument is matched
to an actual argument, the corresponding member of the new argument list has its value set to
that of the matched actual argument, and if that is not R_MissingArg the missing bit is unset.

This new argument list is used to form the evaluation frame for the function, and if named
arguments are subsequently given a new value (before they are evaluated) the missing bit is
cleared.

Missingness of arguments can be interrogated via the missing() function. An argument is
clearly missing if its missing bit is set or if the value is R_MissingArg. However, missingness

5 There is currently one other difference: when profiling builtin functions are counted as function calls but
specials are not.

Chapter 1: R Internal Structures 11

can be passed on from function to function, for using a formal argument as an actual argument
in a function call does not count as evaluation. So missing() has to examine the value (a
promise) of a non-yet-evaluated formal argument to see if it might be missing, which might
involve investigating a promise and so on

Special primitives also need to handle missing arguments, and in some case (e.g. log) that
is why they are special and not builtin. This is usually done by testing if an argument’s value
is R_MissingArg.

1.5.2 Dot-dot-dot arguments

Dot-dot-dot arguments are convenient when writing functions, but complicate the internal code
for argument evaluation.

The formals of a function with a ... argument represent that as a single argument like any
other argument, with tag the symbol R_DotsSymbol. When the actual arguments are matched
to the formals, the value of the ... argument is of SEXPTYPE DOTSXP, a pairlist of promises (as
used for matched arguments) but distinguished by the SEXPTYPE.

Recall that the evaluation frame for a function initially contains the name=value pairs from
the matched call, and hence this will be true for ... as well. The value of ... is a (special)
pairlist whose elements are referred to by the special symbols ..1, ..2, ... which have the
DDVAL bit set: when one of these is encountered it is looked up (via ddfindVar) in the value of
the ... symbol in the evaluation frame.

Values of arguments matched to a ... argument can be missing.

Special primitives may need to handle ... arguments: see for example the internal code of
switch in file src/main/builtin.c.

1.6 Autoprinting

Whether the returned value of a top-level R expression is printed is controlled by the global
boolean variable R_Visible. This is set (to true or false) on entry to all primitive and internal
functions based on the eval column of the table in file src/main/names.c: the appropriate
setting can be extracted by the macro PRIMPRINT.

The R primitive function invisible makes use of this mechanism: it just sets R_Visible =
FALSE before entry and returns its argument.

For most functions the intention will be that the setting of R_Visible when they are en-
tered is the setting used when they return, but there need to be exceptions. The R functions
identify, options, system and writeBin determine whether the result should be visible from
the arguments or user action. Other functions themselves dispatch functions which may change
the visibility flag: examples® are .Internal, do.call, eval, withVisible, if, NextMethod,
Recall, recordGraphics, standardGeneric, switch and UseMethod.

‘Special’ primitive and internal functions evaluate their arguments internally after R_Visible
has been set, and evaluation of the arguments (e.g. an assignment as in PR#9263)) can change
the value of the flag.

The R_Visible flag can also get altered during the evaluation of a function, with comments
in the code about warning, writeChar and graphics functions calling GText (PR#7397). (Since
the C-level function eval sets R_Visible, this could apply to any function calling it. Since it
is called when evaluating promises, even object lookup can change R_Visible.) Internal and
primitive functions force the documented setting of R_Visible on return, unless the C code is
allowed to change it (the exceptions above are indicated by PRIMPRINT having value 2).

The actual autoprinting is done by PrintValueEnv in file print.c. If the object to be printed
has the S4 bit set and S4 methods dispatch is on, show is called to print the object. Otherwise, if

6 the other current example is left brace, which is implemented as a primitive.

Chapter 1: R Internal Structures 12

the object bit is set (so the object has a "class" attribute), print is called to dispatch methods:
for objects without a class the internal code of print.default is called.

1.7 The write barrier and the garbage collector

R has long had a generational garbage collector, and bit gcgen in the sxpinfo header is used
in the implementation of this. This is used in conjunction with the mark bit to identify two
previous generations.

There are three levels of collections. Level 0 collects only the youngest generation, level
1 collects the two youngest generations and level 2 collects all generations. After 20 level-0
collections the next collection is at level 1, and after 5 level-1 collections at level 2. Further, if
a level-n collection fails to provide 20% free space (for each of nodes and the vector heap), the
next collection will be at level n+1. (The R-level function gc () performs a level-2 collection.)

A generational collector needs to efficiently ‘age’ the objects, especially list-like objects (in-
cluding STRSXPs). This is done by ensuring that the elements of a list are regarded as at least
as old as the list when they are assigned. This is handled by the functions SET_VECTOR_ELT and
SET_STRING_ELT, which is why they are functions and not macros. Ensuring the integrity of
such operations is termed the write barrier and is done by making the SEXP opaque and only
providing access via functions (which cannot be used as lvalues in assignments in C).

All code in R extensions is by default behind the write barrier. The only way to obtain
direct access to the internals of the SEXPRECs is to define ‘USE_RINTERNALS’ before including
header file Rinternals.h, which is normally defined in Defn.h. To enable a check on the way
that the access is used, R can be compiled with flag ——enable-strict-barrier which ensures
that header Defn.h does not define ‘USE_RINTERNALS’ and hence that SEXP is opaque in most
of R itself. (There are some necessary exceptions: foremost in file memory.c where the accessor
functions are defined and also in file size.c which needs access to the sizes of the internal
structures.)

For background papers see http://www.stat .uiowa.edu/ luke/R/barrier .html and
http://www.stat.uiowa.edu/ luke/R/gengcnotes.html.

1.8 Serialization Formats

Serialized versions of R objects are used by load/save and also at a slightly lower level by
saveRDS /readRDS (and their earlier ‘internal’ dot-name versions) and serialize/unserialize.
These differ in what they serialize to (a file, a connection, a raw vector) and whether they are
intended to serialize a single object or a collection of objects (typically the workspace). save
writes a header at the beginning of the file (a single LF-terminated line) which the lower-level
versions do not.

save and saveRDS allow various forms of compression, and gzip compression is the default
(except for ASCII saves). Compression is applied to the whole file stream, including the headers,
so serialized files can be uncompressed or re-compressed by external programs. Both load and
readRDS can read gzip, bzip2 and xz forms of compression when reading from a file, and gzip
compression when reading from a connection.

R has used the same serialization format since R 1.4.0 in December 2001. Earlier formats
are still supported via load and save but such formats are not described here. The current
serialization format is called ‘version 2’, and has been expanded in back-compatible ways since
its inception, for example to support additional SEXPTYPEs.

save works by writing a single-line header (typically RDX2\n for a binary save: the only
other current value is RDA2\n for save(files=TRUE)), then creating a tagged pairlist of the
objects to be saved and serializing that single object. 1oad reads the header line, unserializes a
single object (a pairlist or a vector list) and assigns the elements of the object in the specified

http://www.stat.uiowa.edu/~luke/R/barrier.html
http://www.stat.uiowa.edu/~luke/R/gengcnotes.html

Chapter 1: R Internal Structures 13

environment. The header line serves two purposes in R: it identifies the serialization format so
load can switch to the appropriate reader code, and the linefeed allows the detection of files
which have been subjected to a non-binary transfer which re-mapped line endings. It can also
be thought of as a ‘magic number’ in the sense used by the file program (although R save files
are not yet by default known to that program).

Serialization in R needs to take into account that objects may contain references to environ-
ments, which then have enclosing environments and so on. (Environments recognized as package
or name space environments are saved by name.) There are ‘reference objects’ which are not
duplicated on copy and should remain shared on unserialization. These are weak references,
external pointers and environments other than those associated with packages, namespaces and
the global environment. These are handled via a hash table, and references after the first are
written out as a reference marker indexed by the table entry.

Version-2 serialization first writes a header indicating the format (normally ‘X\n’ for an XDR
format binary save, but ‘A\n’, ASCII, and ‘B\n’, native word-order binary, can also occur) and
then three integers giving the version of the format and two R versions (packed by the R_Version
macro from Rversion.h). (Unserialization interprets the two versions as the version of R which
wrote the file followed by the minimal version of R needed to read the format.) Serialization
then writes out the object recursively using function WriteItem in file src/main/serialize.c.

Some objects are written as if they were SEXPTYPEs: such pseudo-SEXPTYPEs cover R_
NilValue, R_EmptyEnv, R_BaseEnv, R_GlobalEnv, R_UnboundValue, R_MissingArg and R_
BaseNamespace.

For all SEXPTYPEs except NILSXP, SYMSXP and ENVSXP serialization starts with an integer with
the SEXPTYPE in bits 0:77 followed by the object bit, two bits indicating if there are any attributes
and if there is a tag (for the pairlist types), an unused bit and then the gp field® in bits 12:27.
Pairlist-like objects write their attributes (if any), tag (if any), CAR and then CDR (using tail
recursion): other objects write their attributes after themselves. Atomic vector objects write
their length followed by the data: generic vector-list objects write their length followed by a call
to WritelItem for each element. The code for CHARSXPs special-cases NA_STRING and writes it
as length -1 with no data. Lengths no more than 2731 - 1 are written in that way and larger
lengths (which only occur on 64-bit systems) as -1 followed by the upper and lower 32-bits as
integers (regarded as unsigned).

Environments are treated in several ways: as we have seen, some are written as specific
pseudo-SEXPTYPEs. Package and namespace environments are written with pseudo-SEXPTYPEs
followed by the name. ‘Normal’ environments are written out as ENVSXPs with an integer indi-
cating if the environment is locked followed by the enclosure, frame, ‘tag’ (the hash table) and
attributes.

In the ‘XDR’ format integers and doubles are written in bigendian order: however the format
is not fully XDR (as defined in RFC 1832) as byte quantities (such as the contents of CHARSXP
and RAWSXP types) are written as-is and not padded to a multiple of four bytes.

The ‘ASCII’ format writes 7-bit characters. Integers are formatted with %d (except that NA_
integer_ is written as NA), doubles formatted with %.16g (plus NA, Inf and -Inf) and bytes
with %02x. Strings are written using standard escapes (e.g. \t and \013) for non-printing and
non-ASCII bytes.

1.9 Encodings for CHARSXPs
Character data in R are stored in the sexptype CHARSXP.

7 only bits 0:4 are currently used for SEXPTYPEs but values 241:255 are used for pseudo-SEXPTYPEs.
8 Currently the only relevant bits are 0:1, 4, 14:15.

Chapter 1: R Internal Structures 14

There is support for encodings other than that of the current locale, in particular UTF-8
and the multi-byte encodings used on Windows for CJK languages. A limited means to indicate
the encoding of a CHARSXP is wia two of the ‘general purpose’ bits which are used to declare
the encoding to be either Latin-1 or UTF-8. (Note that it is possible for a character vector to
contain elements in different encodings.) Both printing and plotting notice the declaration and
convert the string to the current locale (possibly using <xx> to display in hexadecimal bytes that
are not valid in the current locale). Many (but not all) of the character manipulation functions
will either preserve the declaration or re-encode the character string.

Strings that refer to the OS such as file names need to be passed through a wide-character
interface on some OSes (e.g. Windows).

When are character strings declared to be of known encoding? One way is to do so directly via
Encoding. The parser declares the encoding if this is known, either via the encoding argument
to parse or from the locale within which parsing is being done at the R command line. (Other
ways are recorded on the help page for Encoding.)

It is not necessary to declare the encoding of ASCII strings as they will work in any locale.
ASCII strings should never have a marked encoding, as any encoding will be ignored when
entering such strings into the CHARSXP cache.

The rationale behind considering only UTF-8 and Latin-1 was that most systems are capable
of producing UTF-8 strings and this is the nearest we have to a universal format. For those that
do not (for example those lacking a powerful enough iconv), it is likely that they work in Latin-
1, the old R assumption. The the parser can return a UTF-8-encoded string if it encounters
a ‘\uxxx’ escape for a Unicode point that cannot be represented in the current charset. (This
needs MBCS support, and was only enabled? on Windows.) This is enabled for all platforms,
and a ‘\uxxx’ or ‘\Uxxxxxxxx’ escape ensures that the parsed string will be marked as UTF-8.

Most of the character manipulation functions now preserve UTF-8 encodings: there
are some notes as to which at the top of file src/main/character.c and in file
src/library/base/man/Encoding.Rd.

Graphics devices are offered the possibility of handing UTF-8-encoded strings without re-
encoding to the native character set, by setting hasTextUTF8 to be ‘TRUE’ and supplying func-
tions textUTF8 and strWidthUTF8 that expect UTF-8-encoded inputs. Normally the symbol
font is encoded in Adobe Symbol encoding, but that can be re-encoded to UTF-8 by setting
wantSymbolUTF8 to ‘TRUE’. The Windows’ port of cairographics has a rather peculiar assump-
tion: it wants the symbol font to be encoded in UTF-8 as if it were encoded in Latin-1 rather
than Adobe Symbol: this is selected by wantSymbolUTF8 = NA_LOGICAL.

Windows has no UTF-8 locales, but rather expects to work with UCS-2'° strings. R (being
written in standard C) would not work internally with UCS-2 without extensive changes. The
Rgui console!! uses UCS-2 internally, but communicates with the R engine in the native encod-
ing. To allow UTF-8 strings to be printed in UTF-8 in Rgui.exe, an escape convention is used
(see header file rgui _UTF8.h) which is used by cat, print and autoprinting.

‘Unicode’ (UCS-2LE) files are common in the Windows world, and readLines and scan will
read them into UTF-8 strings on Windows if the encoding is declared explicitly on an unopened
connection passed to those functions.

1.10 The CHARSXP cache

There is a global cache for CHARSXPs created by mkChar — the cache ensures that most CHARSXPs
with the same contents share storage (‘contents’ including any declared encoding). Not all

9 See define USE_UTF8_IF_POSSIBLE in file src/main/gram.c.

O or UTF-16 if support for surrogates is enabled in the OS, which it is not normally so at least for Western
versions of Windows, despite some claims to the contrary on the Microsoft website.

' but not the GraphApp toolkit.

1

Chapter 1: R Internal Structures 15

CHARSXPs are part of the cache — notably ‘NA_STRING’ is not. CHARSXPs reloaded from the save
formats of R prior to 0.99.0 are not cached (since the code used is frozen and very few examples
still exist).

The cache records the encoding of the string as well as the bytes: all requests to create a
CHARSXP should be via a call to mkCharLenCE. Any encoding given in mkCharLenCE call will be
ignored if the string’s bytes are all ASCII characters.

1.11 Warnings and errors

Each of warning and stop have two C-level equivalents, warning, warningcall, error and
errorcall. The relationship between the pairs is similar: warning tries to fathom out a suitable
call, and then calls warningcall with that call as the first argument if it succeeds, and with
call = R_NilValue if it does not. When warningcall is called, it includes the deparsed call in
its printout unless call = R_NilValue.

warning and error look at the context stack. If the topmost context is not of type CTXT_
BUILTIN, it is used to provide the call, otherwise the next context provides the call. This means
that when these functions are called from a primitive or . Internal, the imputed call will not be
to primitive/.Internal but to the function calling the primitive/.Internal . This is exactly
what one wants for a .Internal, as this will give the call to the closure wrapper. (Further,
for a .Internal, the call is the argument to .Internal, and so may not correspond to any R
function.) However, it is unlikely to be what is needed for a primitive.

The upshot is that that warningcall and errorcall should normally be used for code called
from a primitive, and warning and error should be used for code called from a .Internal (and
necessarily from .Call, .C and so on, where the call is not passed down). However, there are
two complications. One is that code might be called from either a primitive or a .Internal,
in which case probably warningcall is more appropriate. The other involves replacement
functions, where the call was once of the form

> length(x) <- y 7 x
Error in "length<-"(‘xtmpx‘, value = y ~ x) : invalid value

which is unpalatable to the end user. For replacement functions there will be a suitable context
at the top of the stack, so warning should be used. (The results for .Internal replacement
functions such as substr<- are not ideal.)

1.12 S4 objects

[This section is currently a preliminary draft and should not be taken as definitive. The descrip-
tion assumes that R_NO_METHODS_TABLES has not been set.]

1.12.1 Representation of S4 objects

S4 objects can be of any SEXPTYPE. They are either an object of a simple type (such as an atomic
vector or function) with S4 class information or of type S4SXP. In all cases, the ‘S4 bit’ (bit 4
of the ‘general purpose’ field) is set, and can be tested by the macro/function IS_S4_0BJECT.

S4 objects are created via new()'? and thence via the C function R_do_new_object. This
duplicates the prototype of the class, adds a class attribute and sets the S4 bit. All S4 class
attributes should be character vectors of length one with an attribute giving (as a character
string) the name of the package (or .GlobalEnv) containing the class definition. Since S4
objects have a class attribute, the OBJECT bit is set.

It is currently unclear what should happen if the class attribute is removed from an S4 object,
or if this should be allowed.

12 This can also create non-S4 objects, as in new("integer").

Chapter 1: R Internal Structures 16

1.12.2 S4 classes

S4 classes are stored as R objects in the environment in which they are created, with names
_C__classname: as such they are not listed by default by 1s.

The objects are S4 objects of class "classRepresentation" which is defined in the methods
package.

Since these are just objects, they are subject to the normal scoping rules and can be im-
ported and exported from namespaces like other objects. The directives importClassesFrom
and exportClasses are merely convenient ways to refer to class objects without needing to know
their internal ‘metaname’ (although exportClasses does a little sanity checking via isClass).

1.12.3 S4 methods

Details of methods are stored in S4 objects of class "MethodsList". They have a non-syntactic
name of the form .__M__generic:package for all methods defined in the current environment
for the named generic derived from a specific package (which might be .GlobalEnv).

There is also environment .__T__generic:package which has names the signatures of the
methods defined, and values the corresponding method functions. This is often referred to as a
‘methods table’.

When a package without a namespace is attached these objects become visible on the search
path. library calls methods: : : cacheMetaData to update the internal tables.

During an R session there is an environment associated with each non-primitive generic
containing objects .AllMTable, .Generic, .Methods, .MTable, .SigArgs and .SigLength.
.MTable and A11MTable are merged methods tables containing all the methods defined directly
and via inheritance respectively. .Methods is a merged methods list.

Exporting methods from a namespace is more complicated than exporting a class. Note
first that you do not export a method, but rather the directive exportMethods will export all
the methods defined in the namespace for a specified generic: the code also adds to the list
of generics any that are exported directly. For generics which are listed via exportMethods or
exported themselves, the corresponding "MethodsList" and environment are exported and so
will appear (as hidden objects) in the package environment.

Methods for primitives which are internally S4 generic (see below) are always exported,
whether mentioned in the NAMESPACE file or not.

Methods can be imported either via the directive importMethodsFrom or via importing a
namespace by import. Also, if a generic is imported via importFrom, its methods are also im-
ported. In all cases the generic will be imported if it is in the namespace, so importMethodsFrom
is most appropriate for methods defined on generics in other packages. Since methods for a
generic could be imported from several different packages, the methods tables are merged.

When a package with a namespace is attached methods: : : cacheMetaData is called to update
the internal tables: only the visible methods will be cached.

1.12.4 Mechanics of S4 dispatch

This subsection does not discuss how S4 methods are chosen: see http: //developer .
r-project.org/howMethodsWork.pdf.

For all but primitive functions, setting a method on an existing function that is not itself
S4 generic creates a new object in the current environment which is a call to standardGeneric
with the old definition as the default method. Such S4 generics can also be created via a call to
setGeneric!?® and are standard closures in the R language, with environment the environment
within which they are created. With the advent of namespaces this is somewhat problematic:

13 although this is not recommended as it is less future-proof.

http://developer.r-project.org/howMethodsWork.pdf
http://developer.r-project.org/howMethodsWork.pdf

Chapter 1: R Internal Structures 17

if myfn was previously in a package with a name space there will be two functions called myfn
on the search paths, and which will be called depends on which search path is in use. This is
starkest for functions in the base namespace, where the original will be found ahead of the newly
created function from any other package with a namespace.

Primitive functions are treated quite differently, for efficiency reasons: this results in different
semantics. setGeneric is disallowed for primitive functions. The methods namespace contains
a list .BasicFunsList named by primitive functions: the entries are either FALSE or a standard
S4 generic showing the effective definition. When setMethod (or setReplaceMethod) is called,
it either fails (if the list entry is FALSE) or a method is set on the effective generic given in the
list.

Actual dispatch of S4 methods for almost all primitives piggy-backs on the S3 dispatch
mechanism, so S4 methods can only be dispatched for primitives which are internally S3 generic.
When a primitive that is internally S3 generic is called with a first argument which is an S4
object and S4 dispatch is on (that is, the methods namespace is loaded), DispatchOrEval
calls R_possible_dispatch (defined in file stc/main/objects.c). (Members of the S3 group
generics, which includes all the generic operators, are treated slightly differently: the first two
arguments are checked and DispatchGroup is called.) R_possible_dispatch first checks an
internal table to see if any S4 methods are set for that generic (and S4 dispatch is currently
enabled for that generic), and if so proceeds to S4 dispatch using methods stored in another
internal table. All primitives are in the base namespace, and this mechanism means that S4
methods can be set for (some) primitives and will always be used, in contrast to setting methods
on non-primitives.

The exception is %*%, which is S4 generic but not S3 generic as its C code contains a direct
call to R_possible_dispatch.

The primitive as.double is special, as as.numeric and as.real are copies of it. The methods
package code partly refers to generics by name and partly by function, and maps as.double
and as.real to as.numeric (since that is the name used by packages exporting methods for
it).

Some elements of the language are implemented as primitives, for example }. This includes
the subset and subassignment ‘functions’ and they are S4 generic, again piggybacking on S3
dispatch.

.BasicFunsList is generated when methods is installed, by computing all primitives, initially
disallowing methods on all and then setting generics for members of .GenericArgsEnv, the S4
group generics and a short exceptions list in file BasicFunsList.R: this currently contains the
subsetting and subassignment operators and an override for c.

1.13 Memory allocators

R’s memory allocation is almost all done via routines in file src/main/memory.c. It is impor-
tant to keep track of where memory is allocated, as the Windows port (by default) makes
use of a memory allocator that differs from malloc etc as provided by MinGW. Specifi-
cally, there are entry points Rm_malloc, Rm_free, Rm_calloc and Rm_free provided by file
src/gnuwin32/malloc.c. This was done for two reasons. The primary motivation was per-
formance: the allocator provided by MSVCRT wvia MinGW was far too slow at handling the
many small allocations that the allocation system for SEXPRECs uses. As a side benefit, we
can set a limit on the amount of allocated memory: this is useful as whereas Windows does
provide virtual memory it is relatively far slower than many other R platforms and so limiting
R’s use of swapping is highly advantageous. The high-performance allocator is only called from
src/main/memory.c, src/main/regex.c, src/extra/pcre and src/extra/xdr: note that this
means that it is not used in packages.

Chapter 1: R Internal Structures 18

The rest of R should where possible make use of the allocators made available by file
src/main/memory.c, which are also the methods recommended in Section “Memory allocation”
in Writing R Extensions for use in R packages, namely the use of R_alloc, Calloc, Realloc
and Free. Memory allocated by R_alloc is freed by the garbage collector once the ‘watermark’
has been reset by calling vmaxset. This is done automatically by the wrapper code calling
primitives and .Internal functions (and also by the wrapper code to .Call and .External),
but vmaxget and vmaxset can be used to reset the watermark from within internal code if the
memory is only required for a short time.

All of the methods of memory allocation mentioned so far are relatively expensive. All R
platforms support alloca, and in almost all cases'* this is managed by the compiler, allocates
memory on the C stack and is very efficient.

There are two disadvantages in using alloca. First, it is fragile and care is needed to
avoid writing (or even reading) outside the bounds of the allocation block returned. Second, it
increases the danger of overflowing the C stack. It is suggested that it is only used for smallish
allocations (up to tens of thousands of bytes), and that

R_CheckStack();
is called immediately after the allocation (as R’s stack checking mechanism will warn far
enough from the stack limit to allow for modest use of alloca). (do_makeunique in file
src/main/unique.c provides an example of both points.)

There is an alternative check,

R_CheckStack2(size_t extra);
to be called immediately before trying an allocation of extra bytes.

An alternative strategy has been used for various functions which require intermediate blocks
of storage of varying but usually small size, and this has been consolidated into the routines in
the header file src/main/RBufferUtils.h. This uses a structure which contains a buffer, the
current size and the default size. A call to

R_AllocStringBuffer(size_t blen, R_StringBuffer *buf);

sets buf->data to a memory area of at least blen+1 bytes. At least the default size is
used, which means that for small allocations the same buffer can be reused. A call to R_
FreeStringBufferL releases memory if more than the default has been allocated whereas a call
to R_FreeStringBuffer frees any memory allocated.
The R_StringBuffer structure needs to be initialized, for example by
static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

which uses a default size of MAXELTSIZE = 8192 bytes. Most current uses have a static R_
StringBuffer structure, which allows the (default-sized) buffer to be shared between calls to
e.g. grep and even between functions: this will need to be changed if R ever allows concurrent
evaluation threads. So the idiom is

static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

char *buf;
for(i = 0; i < n; i++) {
compute len
buf = R_AllocStringBuffer(len, &ex_buff);
use buf
X
/* free allocation if larger than the default, but leave
default allocated for future use */
R_FreeStringBufferL (&ex_buff);

M put apparently not on Windows.

Chapter 1: R Internal Structures 19

1.13.1 Internals of R_alloc

The memory used by R_alloc is allocated as R vectors, of type RAWSXP. Thus the allocation
is in units of 8 bytes, and is rounded up. A request for zero bytes currently returns NULL (but
this should not be relied on). For historical reasons, in all other cases 1 byte is added before
rounding up so the allocation is always 1-8 bytes more than was asked for: again this should
not be relied on.

The vectors allocated are protected via the setting of R_VStack, as the garbage collector
marks everything that can be reached from that location. When a vector is R_allocated, its
ATTRIB pointer is set to the current R_VStack, and R_VStack is set to the latest allocation.
Thus R_VStack is a single-linked chain of the vectors currently allocated via R_alloc. Function
vmaxset resets the location R_VStack, and should be to a value that has previously be obtained
via vmaxget: allocations after the value was obtained will no longer be protected and hence
available for garbage collection.

1.14 Internal use of global and base environments

This section notes known use by the system of these environments: the intention is to minimize
or eliminate such uses.

1.14.1 Base environment

The graphics devices system maintains two variables .Device and .Devices in the base envi-
ronment: both are always set. The variable .Devices gives a list of character vectors of the
names of open devices, and .Device is the element corresponding to the currently active device.
The null device will always be open.

There appears to be a variable .0Options, a pairlist giving the current options settings. But
in fact this is just a symbol with a value assigned, and so shows up as a base variable.

Similarly, the evaluator creates a symbol .Last.value which appears as a variable in the
base environment.

Errors can give rise to objects .Traceback and last.warning in the base environment.

1.14.2 Global environment

The seed for the random number generator is stored in object .Random.seed in the global
environment.

Some error handlers may give rise to objects in the global environment: for example
dump . frames by default produces last.dump.

The windows () device makes use of a variable .SavedPlots to store display lists of saved
plots for later display. This is regarded as a variable created by the user.

1.15 Modules

R makes use of a number of shared objects/DLLs stored in the modules directory. These are
parts of the code which have been chosen to be loaded ‘on demand’ rather than linked as dynamic
libraries or incorporated into the main executable/dynamic library.

For a few of these (e.g. vfonts) the issue is size: the database for the Hershey fonts is included
in the C code of the module and was at one time an appreciable part of the codebase for a rarely
used feature. However, for most of the modules the motivation has been the amount of (often
optional) code they will bring in via libraries to which they are linked.

internet The internal HTTP and FTP clients and socket support, which link to system-
specific support libraries.

Chapter 1: R Internal Structures 20

lapack The code which makes use of the LAPACK library, and is linked to 1ibRlapack or
an external LAPACK library.

vfonts The Hershey font databases and the code to draw with them.

X11 (Unix-alikes only.) The X11(0), jpeg(), png() and tiff() devices. These are
optional, and links to some or all of the X11, pango, cairo, jpeg, libpng and
1ibtiff libraries.

internet2.d11
(Windows only.) An alternative version of the internet access routines, compiled
against Internet Explorer internals (and so loads wininet.dll and wsock32.d11).

1.16 Visibility

1.16.1 Hiding C entry points

We make use of the visibility mechanisms discussed in Section “Controlling visibility” in Writing
R Extensions, C entry points not needed outside the main R executable/dynamic library (and
in particular in no package nor module) should be prefixed by attribute_hidden. Minimizing
the visibility of symbols in the R dynamic library will speed up linking to it (which packages
will do) and reduce the possibility of linking to the wrong entry points of the same name. In
addition, on some platforms reducing the number of entry points allows more efficient versions
of PIC to be used: somewhat over half the entry points are hidden. A convenient way to hide
variables (as distinct from functions) is to declare them extern0O in header file Defn.h.

The visibility mechanism used is only available with some compilers and platforms, and in
particular not on Windows, where an alternative mechanism is used. Entry points will not be
made available in R.d11 if they are listed in the file src/gnuwin32/Rd11.hide. Entries in that
file start with a space and must be strictly in alphabetic order in the C locale (use sort on the
file to ensure this if you change it). It is possible to hide Fortran as well as C entry points via this
file: the former are lower-cased and have an underline as suffix, and the suffixed name should
be included in the file. Some entry points exist only on Windows or need to be visible only on
Windows, and some notes on these are provided in file src/gnuwin32/Maintainters.notes.

Because of the advantages of reducing the number of visible entry points, they should be
declared attribute_hidden where possible. Note that this only has an effect on a shared-
R-library build, and so care is needed not to hide entry points that are legitimately used by
packages. So it is best if the decision on visibility is made when a new entry point is created,
including the decision if it should be included in header file Rinternals.h. A list of the visible
entry points on shared-R-library build on a reasonably standard Unix-alike can be made by
something like

nm -g libR.so | grep ’> [BCDT] ’ | cut -b20-

1.16.2 Variables in Windows DLLs

Windows is unique in that it conventionally treats importing variables differently from functions:
variables that are imported from a DLL need to be specified by a prefix (often ‘_imp_’) when
being linked to (‘imported’) but not when being linked from (‘exported’). The details depend
on the compiler system, and have changed for MinGW during the lifetime of that port. They
are in the main hidden behind some macros defined in header file R_ext/libextern.h.

A (non-function) variable in the main R sources that needs to be referred to outside R.d11
(in a package, module or another DLL such as Rgraphapp.dl1l) should be declared with prefix
LibExtern. The main use is in Rinternals.h, but it needs to be considered for any public
header and also Defn.h.

Chapter 1: R Internal Structures 21

It would nowadays be possible to make use of the ‘auto-import’ feature of the MinGW port of
1d to fix up imports from DLLs (and if R is built for the Cygwin platform this is what happens).
However, this was not possible when the MinGW build of R was first constructed in ca 1998,
allows less control of visibility and would not work for other Windows compiler suites.

It is only possible to check if this has been handled correctly by compiling the R sources on
Windows.

1.17 Lazy loading

Lazy loading is always used for code in packages but is optional (selected by the package main-
tainer) for datasets in packages. When a package/namespace which uses it is loaded, the pack-
age/namespace environment is populated with promises for all the named objects: when these
promises are evaluated they load the actual code from a database.

There are separate databases for code and data, stored in the R and data subdirectories.
The database consists of two files, name.rdb and name.rdx. The .rdb file is a concatenation
of serialized objects, and the .rdx file contains an index. The objects are stored in (usually)
a gzip-compressed format with a 4-byte header giving the uncompressed serialized length (in
XDR, that is big-endian, byte order) and read by a call to the primitive lazyLoadDBfetch.
(Note that this makes lazy-loading unsuitable for really large objects: the unserialized length of
an R object can exceed 4GB.)

The index or ‘map’ file name.rdx is a compressed serialized R object to be read by readRDS.
It is a list with three elements variables, references and compressed. The first two are
named lists of integer vectors of length 2 giving the offset and length of the serialized object
in the name.rdb file. Element variables has an entry for each named object: references
serializes a temporary environment used when named environments are added to the database.
compressed is a logical indicating if the serialized objects were compressed: compression is
always used nowadays. We later added the values compressed = 2 and 3 for bzip2 and xz
compression (with the possibility of future expansion to other methods): these formats add a
fifth byte to the header for the type of compression, and stores serialized objects uncompressed
if compression expands them.

The loader for a lazy-load database of code or data is function lazyLoad in the base package,
but note that there is a separate copy to load base itself in file R_HOME/base/R/base.

Lazy-load databases are created by the code in src/library/tools/R/makeLazyLoad.R: the
main tool is the unexported function makeLazyLoadDB and the insertion of database entries is
done by calls to .Call("R_lazyLoadDBinsertValue", ...).

Lazy-load databases of less than 10MB are cached in memory at first use: this was found
necessary when using file systems with high latency (removable devices and network-mounted
file systems on Windows).

The same database mechanism is used to store parsed Rd files. One or all of the parsed
objects is fetched by a call to tools:: :fetchRdDB.

Chapter 2: .Internal vs .Primitive 22

2 .Internal vs .Primitive

C code compiled into R at build time can be called directly in what are termed primitives or
via the .Internal interface, which is very similar to the .External interface except in syntax.
More precisely, R maintains a table of R function names and corresponding C functions to
call, which by convention all start with ‘do_’ and return a SEXP. This table (R_FunTab in file
src/main/names.c) also specifies how many arguments to a function are required or allowed,
whether or not the arguments are to be evaluated before calling, and whether the function is
‘internal’ in the sense that it must be accessed via the . Internal interface, or directly accessible
in which case it is printed in R as .Primitive.
Functions using .Internal() wrapped in a closure are in general preferred as this ensures

standard handling of named and default arguments. For example, grep is defined as

grep <-

function (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,

fixed = FALSE, useBytes = FALSE, invert = FALSE)

{
if (!'is.character(x)) x <- structure(as.character(x), names = names(x))
.Internal (grep(as.character(pattern), x, ignore.case, value,
perl, fixed, useBytes, invert))
}

and the use of as.character allows methods to be dispatched (for example, for factors).
However, for reasons of convenience and also efficiency (as there is some overhead in using the
.Internal interface wrapped in a function closure), the primitive functions are exceptions that
can be accessed directly. And of course, primitive functions are needed for basic operations—for
example .Internal is itself a primitive. Note that primitive functions make no use of R code,
and hence are very different from the usual interpreted functions. In particular, formals and
body return NULL for such objects, and argument matching can be handled differently. For some
primitives (including call, switch, .C and .subset) positional matching is important to avoid
partial matching of the first argument.
The list of primitive functions is subject to change; currently, it includes the following.
1. “Special functions” which really are language elements, but implemented as primitive func-
tions:
{ (if for while repeat break next
return function quote switch
2. Language elements and basic operators (i.e., functions usually not called as foo(a, b,
...)) for subsetting, assignment, arithmetic and logic:

L (L $ ¢

<- K- = [<- [[<- $<- 0x-
+ - * / - hto Tk b/
< <= == 1= >= >
| I & && !
3. “Low level” 0— and 1-argument functions which belong to one of the following groups of
functions:

a. Basic mathematical functions with a single argument, i.e.,

abs sign sqrt
floor ceiling

Chapter 2: .Internal vs .Primitive

exp expml

log2 logl0 loglp

cos sin tan

acos asin atan

cosh sinh tanh

acosh asinh atanh

cospi sinpi tanpi

gamma lgamma digamma trigamma
cumsum cumprod cummax cummin
Im Re Arg Conj Mod

23

log is a primitive function of one or two arguments with named argument matching.

trunc is a difficult case: it is a primitive that can have one or more arguments: the

default method handled in the primitive has only one.

b. Functions rarely used outside of “programming” (i.e., mostly used inside other func-

tions), such as

nargs missing on.exit
as.call as.character as.complex
as.environment as.integer as.logical
is.array is.atomic is.call
is.complex is.double is.environment
is.finite is.function is.infinite
is.language is.list is.logical
is.na is.name is.nan
is.numeric is.object is.pairlist
is.real is.recursive is.single
baseenv emptyenv globalenv
unclass invisible seq_along

c¢. The programming and session management utilities
browser proc.time

4. The following basic replacement and extractor functions

length length<-
class class<-
oldClass oldCLass<-
attr attr<-
attributes attributes<-
names names<-
dim dim<-
dimnames dimnames<-
environment<-
levels<-

storage.mode<-

interactive

as.
as.
is.
is.
is.

is
is

double

raw
character
expression
integer

.matrix
.null

is.
is.

raw
symbol

pos.to.env
seq_len

gc.time tracemem retracemem untracemem

Note that optimizing NAMED = 1 is only effective within a primitive (as the closure wrapper
of a .Internal will set NAMED = 2 when the promise to the argument is evaluated) and
hence replacement functions should where possible be primitive to avoid copying (at least

in their default methods).

5. The following functions are primitive for efficiency reasons:

Chapter 2: .Internal vs .Primitive 24

: - C list

call expression substitute

UseMethod standardGeneric

.C .Fortran .Call .External
round signif rep seq.int

as well as the following internal-use-only functions

.Primitive .Internal
.Call.graphics .External.graphics
.subset .subset?2
.primTrace .primUntrace
lazyLoadDBfetch

The multi-argument primitives

call switch
.C .Fortran .Call .External

intentionally use positional matching, and need to do so to avoid partial matching to their first
argument. They do check that the first argument is unnamed or for the first two, partially
matches the formal argument name. On the other hand,

attr attr<- browser rememtrace substitute UseMethod
log round signif rep seq.int

manage their own argument matching and do work in the standard way.

All the one-argument primitives check that if they are called with a named argument that
this (partially) matches the name given in the documentation: this is also done for replacement
functions with one argument plus value.

The net effect is that argument matching for primitives intended for end-user use is done in
the same way as for interpreted functions except for the six exceptions where positional matching
is required.

2.1 Special primitives

A small number of primitives are specials rather than builtins, that is they are entered with
unevaluated arguments. This is clearly necessary for the language constructs and the assignment
operators, as well as for && and || which conditionally evaluate their second argument, and ~,
.Internal, call, expression, missing, on.exit, quote and substitute which do not evaluate
some of their arguments.

rep and seq.int are special as they evaluate some of their arguments conditional on which
are non-missing.

log, round and signif are special to allow default values to be given to missing arguments.

The subsetting, subassignment and @ operators are all special. (For both extraction and
replacement forms, $ and @ take a symbol argument, and [and [[allow missing arguments.)

UseMethod is special to avoid the additional contexts added to calls to builtins.

2.2 Special internals

There are also special .Internal functions: NextMethod, Recall, withVisible, cbind, rbind
(to allow for the deparse.level argument), eapply, lapply and vapply.

Chapter 2: .Internal vs .Primitive 25

2.3 Prototypes for primitives

Prototypes are available for the primitive functions and operators, and these are used for print-
ing, args and package checking (e.g. by tools: :checkS3methods and by package codetools).
There are two environments in the base package (and namespace), ‘.GenericArgsEnv’ for those
primitives which are internal S3 generics, and ‘. ArgsEnv’ for the rest. Those environments con-
tain closures with the same names as the primitives, formal arguments derived (manually) from
the help pages, a body which is a suitable call to UseMethod or NULL and environment the base
namespace.

The C code for print.default and args uses the closures in these environments in preference
to the definitions in base (as primitives).

The QC function undoc checks that all the functions prototyped in these environments are
currently primitive, and that the primitives not included are better thought of as language
elements (at the time of writing

$ $<- & (: @ o<- [[[[[<- [x= { Il 7 <= <= =

break for function 1if next repeat return while
). Onme could argue about ~, but it is known to the parser and has semantics quite unlike a
normal function. And : is documented with different argument names in its two meanings.)

The QC functions codoc and checkS3methods also make use of these environments (effec-
tively placing them in front of base in the search path), and hence the formals of the functions
they contain are checked against the help pages by codoc. However, there are two problems
with the generic primitives. The first is that many of the operators are part of the S3 group
generic Ops and that defines their arguments to be el and e2: although it would be very un-
usual, an operator could be called as e.g. "+"(el=a, e€2=b) and if method dispatch occurred
to a closure, there would be an argument name mismatch. So the definitions in environment
.GenericArgsEnv have to use argument names el and e2 even though the traditional docu-
mentation is in terms of x and y: codoc makes the appropriate adjustment via tools::: .make_
S3_primitive_generic_env. The second discrepancy is with the Math group generics, where
the group generic is defined with argument list (x, ...), but most of the members only allow
one argument when used as the default method (and round and signif allow two as default
methods): again fix-ups are used.

Those primitives which are in .GenericArgsEnv are checked (via tests/primitives.R) to
be generic via defining methods for them, and a check is made that the remaining primitives
are probably not generic, by setting a method and checking it is not dispatched to (but this can
fail for other reasons). However, there is no certain way to know that if other .Internal or
primitive functions are not internally generic except by reading the source code.

2.4 Adding a primitive

[For R-core use: reverse this procedure to remove a primitive. Most commonly this is done by
changing a .Internal to a primitive or vice versa.|

Primitives are listed in the table R_FunTab in src/main/names.c: primitives have ‘Y = 0’ in
the ‘eval’ field.

There needs to be an ‘\alias’ entry in a help file in the base package, and the primitive
needs to be added to one of the lists at the start of this section.

Some primitives are regarded as language elements (the current ones are listed
above). These need to be added to two lists of exceptions, langElts in undoc() (in file
src/library/tools/R/QC.R) and lang_elements in tests/primitives.R.

All other primitives are regarded as functions and should be listed in one of the environments
defined in src/library/base/R/zzz.R, either . ArgsEnv or .GenericArgsEnv: internal generics
also need to be listed in the character vector .S3PrimitiveGenerics. Note too the discussion

http://CRAN.R-project.org/package=codetools

Chapter 2: .Internal vs .Primitive 26

about argument matching above: if you add a primitive function with more than one argument
by converting a .Internal you need to add argument matching to the C code, and for those
with a single argument, add argument-name checking.

Do ensure that make check-devel has been run: that tests most of these requirements.

Chapter 3: Internationalization in the R sources 27

3 Internationalization in the R sources

The process of marking messages (errors, warnings etc) for translation in an R package is de-
scribed in Section “Internationalization” in Writing R Extensions, and the standard packages
included with R have (with an exception in grDevices for the menus of the windows() device)
been internationalized in the same way as other packages.

3.1 R code

Internationalization for R code is done in exactly the same way as for extension packages. As
all standard packages which have R code also have a namespace, it is never necessary to specify
domain, but for efficiency calls to message, warning and stop should include domain = NA when
the message is constructed via gettextf, gettext or ngettext.

For each package, the extracted messages and translation sources are stored under package
directory po in the source package, and compiled translations under inst/po for installation to
package directory po in the installed package. This also applies to C code in packages.

3.2 Main C code

The main C code (e.g. that in files src/*/*.c and in the modules) is where R is closest to the
sort of application for which ‘gettext’ was written. Messages in the main C code are in domain
R and stored in the top-level directory po with compiled translations under share/locale.

The list of files covered by the R domain is specified in file po/POTFILES. in.

The normal way to mark messages for translation is via _("msg") just as for packages.
However, sometimes one needs to mark passages for translation without wanting them translated
at the time, for example when declaring string constants. This is the purpose of the N_ macro,
for example

{ ERROR_ARGTYPE, N_("invalid argument type")},
from file src/main/errors.c.

The P_ macro

#ifdef ENABLE_NLS

#define P_(StringS, StringP, N) ngettext (StringS, StringP, N)

#else

#define P_(StringS, StringP, N) (N > 1 ? StringP: StringS)

#endif
may be used as a wrapper for ngettext: however in some cases the preferred approach has been
to conditionalize (on ENABLE_NLS) code using ngettext.

The macro _("msg") can safely be used in directory src/appl; the header for standalone
‘nmath’ skips possible translation. (This does not apply to N_ or P_).

3.3 Windows-GUI-specific code

Messages for the Windows GUI are in a separate domain ‘RGui’. This was done for two reasons:

e The translators for the Windows version of R might be separate from those for the rest of
R (familiarity with the GUI helps), and

o Messages for Windows are most naturally handled in the native charset for the language,
and in the case of CJK languages the charset is Windows-specific. (It transpires that as the
iconv we ported works well under Windows, this is less important than anticipated.)

Messages for the ‘RGui’ domain are marked by G_("msg"), a macro that is defined in
header file src/gnuwin32/win-nls.h. The list of files that are considered is hardcoded in

Chapter 3: Internationalization in the R sources 28

the RGui.pot-update target of file po/Makefile.in.in: note that this includes devWindows.c
as the menus on the windows device are considered to be part of the GUI (There is also GN_
("msg"), the analogue of N_("msg").)

The template and message catalogs for the ‘RGui’ domain are in the top-level po directory.

3.4 OS X GUI

This is handled separately: see http://developer.r-project.org/Translations.html.

3.5 Updating
See file po/README for how to update the message templates and catalogs.

http://developer.r-project.org/Translations.html

Chapter 4: Structure of an Installed Package 29

4 Structure of an Installed Package

The structure of a source packages is described in Section “Creating R packages” in Writing R
Extensions: this chapter is concerned with the structure of installed packages.

An installed package has a top-level file DESCRIPTION, a copy of the file of that name in the
package sources with a ‘Built’ field appended, and file INDEX, usually describing the objects on
which help is available, a file NAMESPACE if the package has a name space, optional files such as
CITATION, LICENCE and NEWS, and any other files copied in from inst. It will have directories
Meta, help and html (even if the package has no help pages), almost always has a directory R
and often has a directory 1ibs to contain compiled code. Other directories with known meaning
to R are data, demo, doc and po.

Function library looks for a namespace and if one is found passes control to loadNamespace.
Then library or loadNamespace looks for file R/pkgname, warns if it is not found and otherwise
sources the code (using sys.source) into the package’s environment, then lazy-loads a database
R/sysdata if present. So how R code gets loaded depends on the contents of R/pkgname: a
standard template to load lazy-load databases are provided in share/R/nspackloader.R.

Compiled code is usually loaded when the package’s namespace is loaded by a useDynlib
directive in a NAMESPACE file or by the package’s .onLoad function. Conventionally compiled
code is loaded by a call to library.dynam and this looks in directory 1ibs (and in an appropriate
sub-directory if sub-architectures are in use) for a shared object (Unix-alike) or DLL (Windows).

Subdirectory data serves two purposes. In a package using lazy-loading of data, it contains
a lazy-load database Rdata, plus a file Rdata.rds which contain a named character vector used
by data() in the (unusual) event that it is used for such a package. Otherwise it is a copy of the
data directory in the sources, with saved images re-compressed if R CMD INSTALL --resave-data
was used.

Subdirectory demo supports the demo function, and is copied from the sources.

Subdirectory po contains (in subdirectories) compiled message catalogs.

4.1 Metadata

Directory Meta contains several files in .rds format, that is serialized R objects written by
saveRDS. All packages have files Rd.rds, hsearch.rds, links.rds and package.rds. Packages
with namespaces have a file nsInfo.rds, and those with data, demos or vignettes have data.rds,
demo.rds or vignette.rds files.

The structure of these files (and their existence and names) is private to R, so the description
here is for those trying to follow the R sources: there should be no reference to these files in
non-base packages.

File package.rds is a dump of information extracted from the DESCRIPTION file. It is a list of
several components. The first, ‘DESCRIPTION’, is a character vector, the DESCRIPTION file as read
by read.dcf. Further elements ‘Depends’, ‘Suggests’, ‘Imports’, ‘Rdepends’ and ‘Rdepends?2’
record the ‘Depends’, ‘Suggests’ and ‘Imports’ fields. These are all lists, and can be empty.
The first three have an entry for each package named, each entry being a list of length 1 or 3,
which element ‘name’ (the package name) and optional elements ‘op’ (a character string) and
‘version’ (an object of class ‘"package_version"’). Element ‘Rdepends’ is used for the first
version dependency on R, and ‘Rdepends2’ is a list of zero or more R version dependencies—each
is a three-element list of the form described for packages. Element ‘Rdepends’ is no longer used,
but it is still potentially needed so R < 2.7.0 can detect that the package was not installed for it.

File nsInfo.rds records a list, a parsed version of the NAMESPACE file.

File Rd.rds records a data frame with one row for each help file. The columns are ‘File’
(the file name with extension), ‘Name’ (the ‘\name’ section), ‘Type’ (from the optional ‘\docType’

Chapter 4: Structure of an Installed Package 30

section), ‘Title’, ‘Encoding’, ‘Aliases’, ‘Concepts’ and ‘Keywords’. All columns are character
vectors apart from ‘Aliases’, which is a list of character vectors.

File hsearch.rds records the information to be used by ‘help.search’. This is a list of four
unnamed elements which are character matrices for help files, aliases, keywords and concepts.
All the matrices have columns ‘ID’ and ‘Package’ which are used to tie the aliases, keywords
and concepts (the remaining column of the last three elements) to a particular help file. The
first element has further columns ‘LibPath’ (stored as "" and filled in what the file is loaded),
‘name’, ‘title’, ‘topic’ (the first alias, used when presenting the results as ‘pkgname: : topic’)
and ‘Encoding’.

File links.rds records a named character vector, the names being aliases and the values
character strings of the form

"../../pkgname/html/filename.html"

File data.rds records a two-column character matrix with columns of dataset names and
titles from the corresponding help file. File demo.rds has the same structure for package demos.

File vignette.rds records a dataframe with one row for each ‘vignette’ (. [RS]lnw file in
inst/doc) and with columns ‘File’ (the full file path in the sources), ‘Title’, ‘PDF’ (the pathless
file name of the installed PDF version, if present), ‘Depends’, ‘Keywords’ and ‘R’ (the pathless
file name of the installed R code, if present).

4.2 Help

All installed packages, whether they had any .Rd files or not, have help and html directories.
The latter normally only contains the single file 00Index.html, the package index which has
hyperlinks to the help topics (if any).

Directory help contains files AnIndex, paths.rds and pkgname.rd[bx]. The latter two files
are a lazy-load database of parsed .Rd files, accessed by tools:::fetchRdDB. File paths.rds
is a saved character vector of the original path names of the .Rd files, used when updating the
database.

File AnIndex is a two-column tab-delimited file: the first column contains the aliases defined
in the help files and the second the basename (without the .Rd or .rd extension) of the file
containing that alias. It is read by utils:::index.search to search for files matching a topic
(alias), and read by scan in utils:::matchAvailableTopics, part of the completion system.

File aliases.rds is the same information as AnIndex as a named character vector (names
the topics, values the file basename), for faster access.

Chapter 5: Files 31

5 Files

R provides many functions to work with files and directories: many of these have been added
relatively recently to facilitate scripting in R and in particular the replacement of Perl scripts
by R scripts in the management of R itself.

These functions are implemented by standard C/POSIX library calls, except on Windows.
That means that filenames must be encoded in the current locale as the OS provides no other
means to access the file system: increasingly filenames are stored in UTF-8 and the OS will
translate filenames to UTF-8 in other locales. So using a UTF-8 locale gives transparent access
to the whole file system.

Windows is another story. There the internal view of filenames is in UTF-16LE (so-called
‘Unicode’), and standard C library calls can only access files whose names can be expressed in
the current codepage. To circumvent that restriction, there is a parallel set of Windows-specific
calls which take wide-character arguments for filepaths. Much of the file-handling in R has been
moved over to using these functions, so filenames can be manipulated in R as UTF-8 encoded
character strings, converted to wide characters (which on Windows are UTF-16LE) and passed
to the OS. The utilities RC_fopen and filenameToWchar help this process. Currently file.copy
to a directory, list.files, list.dirs and path.expand work only with filepaths encoded in
the current codepage.

All these functions do tilde expansion, in the same way as path.expand, with the deliberate
exception of Sys.glob.

File names may be case sensitive or not: the latter is the norm on Windows and OS X, the
former on other Unix-alikes. Note that this is a property of both the OS and the file system: it
is often possible to map names to upper or lower case when mounting the file system. This can
affect the matching of patterns in list.files and Sys.glob.

File names commonly contain spaces on Windows and OS X but not elsewhere. As file names
are handled as character strings by R, spaces are not usually a concern unless file names are
passed to other process, e.g. by a system call.

Windows has another couple of peculiarities. Whereas a POSIX file system has a single root
directory (and other physical file systems are mounted onto logical directories under that root),
Windows has separate roots for each physical or logical file system (‘volume’), organized under
drives (with file paths starting D: for an ASCII letter, case-insensitively) and network shares
(with paths like \netname\topdir\myfiles\a file. There is a current drive, and path names
without a drive part are relative to the current drive. Further, each drive has a current directory,
and relative paths are relative to that current directory, on a particular drive if one is specified.
SoD:dir\file and D: are valid path specifications (the last being the current directory on drive
D:).

Chapter 6: Graphics 32

6 Graphics

R’s graphics internals were re-designed to enable multiple graphics systems to be installed on top
on the graphics ‘engine’ — currently there are two such systems, one supporting ‘base’ graphics
(based on that in S and whose R code' is in package graphics) and one implemented in package
grid.

Some notes on the historical changes can be found at http://www.stat .auckland .
ac .nz/ paul /R/basegraph . html and http://www.stat .auckland .ac.nz/ “paul /R/
graphicsChanges.html.

At the lowest level is a graphics device, which manages a plotting surface (a screen window
or a representation to be written to a file). This implements a set of graphics primitives, to
‘draw’

e a circle, optionally filled

e a rectangle, optionally filled

e a line

e a set of connected lines

e a polygon, optionally filled

e a paths, optionally filled using a winding rule
e text

e a raster image (optional)

e and to set a clipping rectangle

as well as requests for information such as
e the width of a string if plotted
e the metrics (width, ascent, descent) of a single character

e the current size of the plotting surface

and requests/opportunities to take action such as
e start a new ‘page’, possibly after responding to a request to ask the user for confirmation.
e return the position of the device pointer (if any).

e when a device become the current device or stops being the current device (this is usually
used to change the window title on a screen device).

e when drawing starts or finishes (e.g. used to flush graphics to the screen when drawing
stops).
e wait for an event, for example a mouse click or keypress.
e an ‘onexit’ action, to clean up if plotting is interrupted (by an error or by the user).
e capture the current contents of the device as a raster image.
e close the device.
The device also sets a number of variables, mainly Boolean flags indicating its capabilities.

Devices work entirely in ‘device units’ which are up to its developer: they can be in pixels, big
points (1/72 inch), twips, . .., and can differ? in the ‘x’ and ‘y’ directions.

The next layer up is the graphics ‘engine’ that is the main interface to the device (although
the graphics subsystems do talk directly to devices). This is responsible for clipping lines,
rectangles and polygons, converting the pch values 0. . .26 to sets of lines/circles, centring (and

1 The C code is in files base.c, graphics.c, par.c, plot.c and plot3d.c in directory src/main.

2 although that needs to be handled carefully, as for example the circle callback is given a radius (and that
should be interpreted as in the x units).

http://www.stat.auckland.ac.nz/~paul/R/basegraph.html
http://www.stat.auckland.ac.nz/~paul/R/basegraph.html
http://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html
http://www.stat.auckland.ac.nz/~paul/R/graphicsChanges.html

Chapter 6: Graphics 33

otherwise adjusting) text, rendering mathematical expressions (‘plotmath’) and mapping colour
descriptions such as names to the internal representation.

Another function of the engine is to manage display lists and snapshots. Some but not all
instances of graphics devices maintain display lists, a ‘list’ of operations that have been performed
on the device to produce the current plot (since the device was opened or the plot was last cleared,
e.g. by plot.new). Screen devices generally maintain a display list to handle repaint and resize
events whereas file-based formats do not—display lists are also used to implement dev.copy()
and friends. The display list is a pairlist of . Internal (base graphics) or .Call.graphics (grid
graphics) calls, which means that the C code implementing a graphics operation will be re-called
when the display list is replayed: apart from the part which records the operation if successful.

Snapshots of the current graphics state are taken by GEcreateSnapshot and replayed later
in the session by GEplaySnapshot. These are used by recordPlot (), replayPlot() and the
GUI menus of the windows () device. The ‘state’ includes the display list.

The top layer comprises the graphics subsystems. Although there is provision for 24 subsys-
tems since about 2001, currently still only two exist, ‘base’ and ‘grid’. The base subsystem is
registered with the engine when R is initialized, and unregistered (via KillAllDevices) when
an R session is shut down. The grid subsystem is registered in its .onLoad function and unreg-
istered in the .onUnload function. The graphics subsystem may also have ‘state’ information
saved in a snapshot (currently base does and grid does not).

Package grDevices was originally created to contain the basic graphics devices (although X11
is in a separate load-on-demand module because of the volume of external libraries it brings
in). Since then it has been used for other functionality that was thought desirable for use with
grid, and hence has been transferred from package graphics to grDevices. This is principally
concerned with the handling of colours and recording and replaying plots.

6.1 Graphics Devices

R ships with several graphics devices, and there is support for third-party packages to provide
additional devices—several packages now do. This section describes the device internals from
the viewpoint of a would-be writer of a graphics device.

6.1.1 Device structures

There are two types used internally which are pointers to structures related to graphics devices.

The DevDesc type is a structure defined in the header file R_ext/GraphicsDevice.h (which is
included by R_ext/GraphicsEngine.h). This describes the physical characteristics of a device,
the capabilities of the device driver and contains a set of callback functions that will be used
by the graphics engine to obtain information about the device and initiate actions (e.g. a new
page, plotting a line or some text). Type pDevDesc is a pointer to this type.

The following callbacks can be omitted (or set to the null pointer, their default value) when
appropriate default behaviour will be taken by the graphics engine: activate, cap, deactivate,
locator, holdflush (API version 9), mode, newFrameConfirm, path, raster and size.

The relationship of device units to physical dimensions is set by the element ipr of the
DevDesc structure: a ‘double’ array of length 2.

The GEDevDesc type is a structure defined in R_ext/GraphicsEngine.h (with comments in
the file) as

typedef struct _GEDevDesc GEDevDesc;
struct _GEDevDesc {

pDevDesc dev;

Rboolean displayListOn;

SEXP displayList;

Chapter 6: Graphics 34

SEXP DLlastElt;

SEXP savedSnapshot;

Rboolean dirty;

Rboolean recordGraphics;

GESystemDesc *gesd[MAX_GRAPHICS_SYSTEMS] ;
Rboolean ask;

}

So this is essentially a device structure plus information about the device maintained by the
graphics engine and normally? visible to the engine and not to the device. Type pGEDevDesc is
a pointer to this type.

The graphics engine maintains an array of devices, as pointers to GEDevDesc structures. The
array is of size 64 but the first element is always occupied by the "null device" and the final
element is kept as NULL as a sentinel.* This array is reflected in the R variable ‘.Devices’.
Once a device is killed its element becomes available for reallocation (and its name will appear
as "" in ‘.Devices’). Exactly one of the devices is ‘active’: this is the the null device if no other
device has been opened and not killed.

Each instance of a graphics device needs to set up a GEDevDesc structure by code very similar
to

pGEDevDesc gdd;

R_GE_checkVersionOrDie (R_GE_version);
R_CheckDeviceAvailable();
BEGIN_SUSPEND_INTERRUPTS {
pDevDesc dev;
/* Allocate and initialize the device driver data */
if (!(dev = (pDevDesc) calloc(l, sizeof(DevDesc))))
return 0; /* or error() */
/* set up device driver or free ’dev’ and error() */
gdd = GEcreateDevDesc(dev) ;
GEaddDevice2(gdd, "dev_name");
} END_SUSPEND_INTERRUPTS;

The DevDesc structure contains a void * pointer ‘deviceSpecific’ which is used to store
data specific to the device. Setting up the device driver includes initializing all the non-zero
elements of the DevDesc structure.

Note that the device structure is zeroed when allocated: this provides some protection against
future expansion of the structure since the graphics engine can add elements that need to be
non-NULL/non-zero to be ‘on’ (and the structure ends with 64 reserved bytes which will be
zeroed and allow for future expansion).

Rather more protection is provided by the version number of the engine/device API, R_GE_
version defined in R_ext/GraphicsEngine.h together with access functions

int R_GE_getVersion(void);
void R_GE_checkVersionOrDie(int version);

If a graphics device calls R_GE_checkVersionOrDie (R_GE_version) it can ensure it will only
be used in versions of R which provide the API it was designed for and compiled against.

3 It is possible for the device to find the GEDevDesc which points to its DevDesc, and this is done often enough
that there is a convenience function desc2GEDesc to do so.

4 Calling R_CheckDeviceAvailable() ensures there is a free slot or throws an error.

Chapter 6: Graphics 35

6.1.2 Device capabilities
The following ‘capabilities’ can be defined for the device’s DevDesc structure.

e canChangeGamma — Rboolean: can the display gamma be adjusted? This is now ignored, as
gamma support has been removed.

e canHadj — integer: can the device do horizontal adjustment of text via the text callback,
and if so, how precisely? 0 = no adjustment, 1 = {0, 0.5, 1} (left, centre, right justification)
or 2 = continuously variable (in [0,1]) between left and right justification.

e canGenMouseDown — Rboolean: can the device handle mouse down events? This flag and
the next three are not currently used by R, but are maintained for back compatibility.

e canGenMouseMove — Rboolean: ditto for mouse move events.
e canGenMouseUp — Rboolean: ditto for mouse up events.
e canGenKeybd — Rboolean: ditto for keyboard events.

e hasTextUTF8 - Rboolean: should non-symbol text be sent (in UTF-8) to the textUTF8 and
strWidthUTF8 callbacks, and sent as Unicode points (negative values) to the metricInfo
callback?

e wantSymbolUTF8 — Rboolean: should symbol text be handled in UTF-8 in the same way as
other text? Requires textUTF8 = TRUE.

e haveTransparency: does the device support semi-transparent colours?
e haveTransparentBg: can the background be fully or semi-transparent?
e haveRaster: is there support for rendering raster images?

e haveCapture: is there support for grid: :grid.cap?

e haveLlocator: is there an interactive locator?

The last three can often be deduced to be false from the presence of NULL entries instead of
the corresponding functions.

6.1.3 Handling text

Handling text is probably the hardest task for a graphics device, and the design allows for the
device to optionally indicate that it has additional capabilities. (If the device does not, these
will if possible be handled in the graphics engine.)

The three callbacks for handling text that must be in all graphics devices are text, strWidth
and metricInfo with declarations

void text(double x, double y, const char *str, double rot, double hadj,
pGgcontext gc, pDevDesc dd);

double strWidth(const char *str, pGEcontext gc, pDevDesc dd);

void metricInfo(int c, pGEcontext gc,
double*x ascent, double* descent, double* width,
pDevDesc dd);

The ‘gc’ parameter provides the graphics context, most importantly the current font and fontsize,
and ‘dd’ is a pointer to the active device’s structure.

The text callback should plot ‘str’ at ‘(x, y)’® with an anti-clockwise rotation of ‘rot’
degrees. (For ‘hadj’ see below.) The interpretation for horizontal text is that the baseline is at
y and the start is a x, so any left bearing for the first character will start at x.

5 in device coordinates

Chapter 6: Graphics 36

The strWidth callback computes the width of the string which it would occupy if plotted
horizontally in the current font. (Width here is expected to include both (preferably) or neither
of left and right bearings.)

The metricInfo callback computes the size of a single character: ascent is the distance it
extends above the baseline and descent how far it extends below the baseline. width is the
amount by which the cursor should be advanced when the character is placed. For ascent and
descent this is intended to be the bounding box of the ‘ink’ put down by the glyph and not
the box which might be used when assembling a line of conventional text (it needs to be for e.g.
hat (beta) to work correctly). However, the width is used in plotmath to advance to the next
character, and so needs to include left and right bearings.

The interpretation of ‘c’ depends on the locale. In a single-byte locale values 32...255
indicate the corresponding character in the locale (if present). For the symbol font (as used by
‘graphics: :par(font=5)’, ‘grid: :gpar(fontface=5") and by ‘plotmath’), values 32...126,
161...239, 241...254 indicate glyphs in the Adobe Symbol encoding. In a multibyte locale,
c represents a Unicode point (except in the symbol font). So the function needs to include code
like

Rboolean Unicode = mbcslocale && (gc->fontface != 5);

if (¢ < 0) { Unicode = TRUE; ¢ = -c; }

if (Unicode) UniCharMetric(c, ...); else CharMetric(c, ...);
In addition, if device capability hasTextUTF8 (see below) is true, Unicode points will be passed
as negative values: the code snippet above shows how to handle this. (This applies to the symbol
font only if device capability wantSymbolUTFS is true.)

If possible, the graphics device should handle clipping of text. It indicates this by the
structure element canClip which if true will result in calls to the callback clip to set the
clipping region. If this is not done, the engine will clip very crudely (by omitting any text that
does not appear to be wholly inside the clipping region).

The device structure has an integer element canHadj, which indicates if the device can do
horizontal alignment of text. If this is one, argument ‘hadj’ to text will be called as 0 ,0.5, 1
to indicate left-, centre- and right-alignment at the indicated position. If it is two, continuous
values in the range [0, 1] are assumed to be supported.

Capability hasTextUTF8 if true, it has two consequences. First, there are callbacks textUTF8
and strWidthUTF8 that should behave identically to text and strWidth except that ‘str’ is
assumed to be in UTF-8 rather than the current locale’s encoding. The graphics engine will
call these for all text except in the symbol font. Second, Unicode points will be passed to the
metricInfo callback as negative integers. If your device would prefer to have UTF-8-encoded
symbols, define wantSymbolUTF8 as well as hasTextUTF8. In that case text in the symbol font
is sent to textUTF8 and strWidthUTF8.

Some devices can produce high-quality rotated text, but those based on bitmaps often cannot.
Those which can should set useRotatedTextInContour to be true from graphics API version 4.

Several other elements relate to the precise placement of text by the graphics engine:

double xCharQOffset;
double yCharOffset;
double yLineBias;
double cral2];

These are more than a little mysterious. Element cra provides an indication of the character
size, par("cra") in base graphics, in device units. The mystery is what is meant by ‘character
size’: which character, which font at which size? Some help can be obtained by looking at
what this is used for. The first element, ‘width’, is not used by R except to set the graphical
parameters. The second, ‘height’, is use to set the line spacing, that is the relationship between
par("mai") and par("mai") and so on. It is suggested that a good choice is

Chapter 6: Graphics 37

dd->cral[0] = 0.9 * fnsize;
dd->cral1] 1.2 * fnsize;

where ‘fnsize’ is the ‘size’ of the standard font (cex=1) on the device, in device units. So for
a 12-point font (the usual default for graphics devices), ‘fnsize’ should be 12 points in device
units.

The remaining elements are yet more mysterious. The postscript () device says

/* Character Addressing Offsets */

/* These offsets should center a single */

/* plotting character over the plotting point. */
/* Pure guesswork and eyeballing ... */

dd->xCharOffset 0.4900;
dd->yCharOffset = 0.3333;
dd->yLineBias = 0.2;

It seems that xCharOffset is not currently used, and yCharOffset is used by the base graphics
system to set vertical alignment in text() when pos is specified, and in identify(). It is
occasionally used by the graphic engine when attempting exact centring of text, such as character
string values of pch in points() or grid.points()—however, it is only used when precise
character metric information is not available or for multi-line strings.

yLineBias is used in the base graphics system in axis() and mtext() to provide a default
for their ‘padj’ argument.

6.1.4 Conventions

The aim is to make the (default) output from graphics devices as similar as possible. Generally
people follow the model of the postscript and pdf devices (which share most of their internal
code).

The following conventions have become established:
e The default size of a device should be 7 inches square.

e There should be a ‘pointsize’ argument which defaults to 12, and it should give the
pointsize in big points (1/72 inch). How exactly this is interpreted is font-specific, but it
should use a font which works with lines packed 1/6 inch apart, and looks good with lines
1/5 inch apart (that is with 2pt leading).

e The default font family should be a sans serif font, e.g Helvetica or similar (e.g. Arial on
Windows).

e 1lwd = 1 should correspond to a line width of 1/96 inch. This will be a problem with pixel-
based devices, and generally there is a minimum line width of 1 pixel (although this may
not be appropriate where anti-aliasing of lines is used, and cairo prefers a minimum of 2
pixels).

e Even very small circles should be visible, e.g. by using a minimum radius of 1 pixel or
replacing very small circles by a single filled pixel.

e How RGB colour values will be interpreted should be documented, and preferably be sRGB.
e The help page should describe its policy on these conventions.
These conventions are less clear-cut for bitmap devices, especially where the bitmap format
does not have a design resolution.

The interpretation of the line texture (par("lty") is described in the header
GraphicsEngine.h and in the help for par: note that the ‘scale’ of the pattern should be
proportional to the line width (at least for widths above the default).

Chapter 6: Graphics 38

6.1.5 ‘Mode’

One of the device callbacks is a function mode, documented in the header as

* device_Mode is called whenever the graphics engine
* starts drawing (mode=1) or stops drawing (mode=0)
* GMode (in graphics.c) also says that

* mode = 2 (graphical input on) exists.

* The device is not required to do anything

Since mode = 2 has only recently been documented at device level. It could be used to change
the graphics cursor, but devices currently do that in the locator callback. (In base graphics
the mode is set for the duration of a locator call, but if type != "n" is switched back for each
point whilst annotation is being done.)

Many devices do indeed do nothing on this call, but some screen devices ensure that drawing
is flushed to the screen when called with mode = 0. It is tempting to use it for some sort of
buffering, but note that ‘drawing’ is interpreted at quite a low level and a typical single figure
will stop and start drawing many times. The buffering introduced in the X11() device makes
use of mode = 0 to indicate activity: it updates the screen after ca 100ms of inactivity.

This callback need not be supplied if it does nothing.

6.1.6 Graphics events
Graphics devices may be designed to handle user interaction: not all are.

Users may use grDevices: :setGraphicsEventEnv to set the eventEnv environment in the
device driver to hold event handlers. When the user calls grDevices: :getGraphicsEvent,
R will take three steps. First, it sets the device driver member gettingEvent to true for
each device with a non-NULL eventEnv entry, and calls initEvent (dd, true) if the callback is
defined. It then enters an event loop. Each time through the loop R will process events once,
then check whether any device has set the result member of eventEnv to a non-NULL value,
and will save the first such value found to be returned. C functions doMouseEvent and doKeybd
are provided to call the R event handlers onMouseDown, onMouseMove, onMouseUp, and onKeybd
and set eventEnv$result during this step. Finally, initEvent is called again with init=false
to inform the the devices that the loop is done, and the result is returned to the user.

6.1.7 Specific devices

Specific devices are mostly documented by comments in their sources, although for devices of
many years’ standing those comments can be in need of updating. This subsection is a repository
of notes on design decisions.

6.1.7.1 X11()

The X11(type="X1ib") device dates back to the mid 1990’s and was written then in X1ib, the
most basic X11 toolkit. It has since optionally made use of a few features from other toolkits:
1ibXt is used to read X11 resources, and 1ibXmu is used in the handling of clipboard selections.

Using basic X1ib code makes drawing fast, but is limiting. There is no support of translucent
colours (that came in the Xrender toolkit of 2000) nor for rotated text (which R implements by
rendering text to a bitmap and rotating the latter).

The hinting for the X11 window asks for backing store to be used, and some windows man-
agers may use it to handle repaints, but it seems that most repainting is done by replaying the
display list (and here the fast drawing is very helpful).

There are perennial problems with finding fonts. Many users fail to realize that fonts are a
function of the X server and not of the machine that R is running on. After many difficulties,
R tries first to find the nearest size match in the sizes provided for Adobe fonts in the standard

Chapter 6: Graphics 39

75dpi and 100dpi X11 font packages—even that will fail to work when users of near-100dpi
screens have only the 75dpi set installed. The 75dpi set allows sizes down to 6 points on a
100dpi screen, but some users do try to use smaller sizes and even 6 and 8 point bitmapped
fonts do not look good.

Introduction of UTF-8 locales has caused another wave of difficulties. X11 has very few gen-
uine UTF-8 fonts, and produces composite fontsets for the is010646-1 encoding. Unfortunately
these seem to have low coverage apart from a few monospaced fonts in a few sizes (which are
not suitable for graph annotation), and where glyphs are missing what is plotted is often quite
unsatisfactory.

The current approach is to make use of more modern toolkits, namely cairo for rendering and
Pango for font management—because these are associated with Gtk+2 they are widely available.
Cairo supports translucent colours and alpha-blending (via Xrender), and anti-aliasing for the
display of lines and text. Pango’s font management is based on fontconfig and somewhat
mysterious, but it seems mainly to use Type 1 and TrueType fonts on the machine running R
and send grayscale bitmaps to cairo.

6.1.7.2 windows()

The windows() device is a family of devices: it supports plotting to Windows (enhanced)
metafiles, BMP, JPEG, PNG and TIFF files as well as to Windows printers.

In most of these cases the primary plotting is to a bitmap: this is used for the (default)
buffering of the screen device, which also enables the current plot to be saved to BMP, JPEG,
PNG or TIFF (it is the internal bitmap which is copied to the file in the appropriate format).

The device units are pixels (logical ones on a metafile device).

The code was originally written by Guido Masarotto with extensive use of macros, which can
make it hard to disentangle.

For a screen device, xd->gawin is the canvas of the screen, and xd->bm is the off-screen
bitmap. So macro DRAW arranges to plot to xd->bm, and if buffering is off, also to xd->gawin.
For all other device, xd->gawin is the canvas, a bitmap for the jpeg() and png() device, and an
internal representation of a Windows metafile for the win.metafile() and win.print device.
Since ‘plotting’ is done by Windows GDI calls to the appropriate canvas, its precise nature is
hidden by the GDI system.

Buffering on the screen device is achieved by running a timer, which when it fires copies the
internal bitmap to the screen. This is set to fire every 500ms (by default) and is reset to 100ms
after plotting activity.

Repaint events are handled by copying the internal bitmap to the screen canvas (and then
reinitializing the timer), unless there has been a resize. Resizes are handled by replaying the
display list: this might not be necessary if a fixed canvas with scrollbars is being used, but that
is the least popular of the three forms of resizing.

Text on the device has moved to ‘Unicode’ (UCS-2) in recent years. UTF-8 is requested
(hasTextUTF8 = TRUE) for standard text, and converted to UCS-2 in the plotting functions in
file src/extra/graphapp/gdraw.c. However, GDI has no support for Unicode symbol fonts,
and symbols are handled in Adobe Symbol encoding.

There is support for translucent colours (with alpha channel between 0 and 255) was in-
troduced on the screen device and bitmap devices.® This is done by drawing on a further
internal bitmap, xd->bm2, in the opaque version of the colour then alpha-blending that bitmap
to xd->bm. The alpha-blending routine is in a separate DLL, msimg32.d11, which is loaded on
first use. As small a rectangular region as reasonably possible is alpha-blended (this is rectangle

6 Tt is technically possible to use alpha-blending on metafile devices such as printers, but it seems few drivers
have support for this.

Chapter 6: Graphics 40

r in the code), but things like mitre joins make estimation of a tight bounding box too much
work for lines and polygonal boundaries. Translucent-coloured lines are not common, and the
performance seems acceptable.

The support for a transparent background in png() predates full alpha-channel support
in 1libpng (let alone in PNG viewers), so makes use of the limited transparency support in
earlier versions of PNG. Where 24-bit colour is used, this is done by marking a single colour
to be rendered as transparent. R chose ‘#fdfefd’, and uses this as the background colour (in
GA_NewPage if the specified background colour is transparent (and all non-opaque background
colours are treated as transparent). So this works by marking that colour in the PNG file,
and viewers without transparency support see a slightly-off-white background, as if there were
a near-white canvas. Where a palette is used in the PNG file (if less than 256 colours were
used) then this colour is recorded with full transparency and the remaining colours as opaque.
If 32-bit colour were available then we could add a full alpha channel, but this is dependent on
the graphics hardware and undocumented properties of GDI.

6.2 Colours

Devices receive colours as a typedef rcolor (an unsigned int) defined in the header R_
ext/GraphicsEngine.h). The 4 bytes are R ,G, B and alpha from least to most significant.
So each of RGB has 256 levels of luminosity from 0 to 255. The alpha byte represents opacity,
so value 255 is fully opaque and 0 fully transparent: many but not all devices handle semi-
transparent colours.

Colors can be created in C via the macro R_RGBA, and a set of macros are defined in R_
ext/GraphicsDevice.h to extract the various components.

Colours in the base graphics system were originally adopted from S (and before that the
GRZ library from Bell Labs), with the concept of a (variable-sized) palette of colours referenced
by numbers ‘1...N plus ‘0’ (the background colour of the current device). R introduced the
idea of referring to colours by character strings, either in the forms ‘#RRGGBB’ or ‘#RRGGBBAA’
(representing the bytes in hex) as given by function rgb () or via names: the 657 known names are
given in the character vector colors and in a table in file colors.c in package grDevices. Note
that semi-transparent colours are not ‘premultiplied’, so 50% transparent white is ‘#ffff££80’.

Integer or character NA colours are mapped internally to transparent white, as is the character
string "NA".
The handling of negative colour numbers was undefined (and inconsistent) prior to R 3.0.0,

which made them an error. Colours greater than ‘N’ are wrapped around, so that for example
with the default palette of size 8, colour ‘10’ is colour ‘2’ in the palette.

Integer colours have been used more widely than the base graphics sub-system, as they are
supported by package grid and hence by lattice and ggplot2. (They are also used by package
rgl.) grid did re-define colour ‘0’ to be transparent white, but rgl used col2rgb and hence the
background colour of base graphics.

Note that positive integer colours refer to the current palette and colour ‘0’ to the current
device (and a device is opened if needs be). These are mapped to type rcolor at the time of
use: this matters when re-playing the display list, e.g. when a device is resized or dev.copy is
used. The palette should be thought of as per-session: it is stored in package grDevices.

The convention is that devices use the colorspace ‘sRGB’. This is an industry standard: it
is used by Web browsers and JPEGs from all but high-end digital cameras. The interpretation
is a matter for graphics devices and for code that manipulates colours, but not for the graphics
engine or subsystems.

R uses a painting model similar to PostScript and PDF. This means that where shapes
(circles, rectangles and polygons) can both be filled and have a stroked border, the fill should

http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=rgl

Chapter 6: Graphics 41

be painted first and then the border (or otherwise only half the border will be visible). Where
both the fill and the border are semi-transparent there is some room for interpretation of the
intention. Most devices first paint the fill and then the border, alpha-blending at each step.
However, PDF does some automatic grouping of objects, and when the fill and the border have
the same alpha, they are painted onto the same layer and then alpha-blended in one step. (See
p- 569 of the PDF Reference Sixth Edition, version 1.7. Unfortunately, although this is what
the PDF standard says should happen, it is not correctly implemented by some viewers.)

The mapping from colour numbers to type rcolor is primarily done by function RGBpar3:
this is exported from the R binary but linked to code in package grDevices. The first argument
is a SEXP pointing to a character, integer or double vector, and the second is the rcolor value
for colour 0 (or "0"). C entry point RGBpar is a wrapper that takes 0 to be transparent white:
it is often used to set colour defaults for devices. The R-level wrapper is col2rgb.

There is also R_GE_str2col which takes a C string and converts to type rcolor: "0’ is
converted to transparent white.

There is a R-level conversion of colours to ‘##RRGGBBAA’ by image.default(useRaster =
TRUE).

The other color-conversion entry point in the API is name2col which takes a colour name (a
C string) and returns a value of type rcolor. This handles "NA", "transparent" and the 657
colours known to the R function colors().

6.3 Base graphics

The base graphics system was migrated to package graphics in R 3.0.0: it was previously imple-
mented in files in src/main.

For historical reasons it is largely implemented in two layers. Files plot.c, plot3d.c and
par.c contain the code for the around 30 .External calls that implement the basic graphics
operations. This code then calls functions with names starting with G and declared in header
Rgraphics.h in file graphics.c, which in turn call the graphics engine (whose functions almost
all have names starting with GE).

A large part of the infrastructure of the base graphics subsystem are the graphics parameters
(as set/read by par()). These are stored in a GPar structure declared in the private header
Graphics.h. This structure has two variables (state and valid) tracking the state of the base
subsystem on the device, and many variables recording the graphics parameters and functions
of them.

The base system state is contained in baseSystemState structure defined in R_
ext/GraphicsBase.h. This contains three GPar structures and a Boolean variable used to
record if plot.new() (or persp) has been used successfully on the device.

The three copies of the GPar structure are used to store the current parameters (accessed
via gpptr), the ‘device copy’ (accessed via dpptr) and space for a saved copy of the ‘device
copy’ parameters. The current parameters are, clearly, those currently in use and are copied
from the ‘device copy’ whenever plot.new() is called (whether or not that advances to the next
‘page’). The saved copy keeps the state when the device was last completely cleared (e.g. when
plot.new() was called with par (new=TRUE)), and is used to replay the display list.

The separation is not completely clean: the ‘device copy’ is altered if a plot with log scale(s)
is set up via plot.window().

There is yet another copy of most of the graphics parameters in static variables in
graphics.c which are used to preserve the current parameters across the processing of inline
parameters in high-level graphics calls (handled by ProcessInlinePars).

Snapshots of the base subsystem record the ‘saved device copy’ of the GPar structure.

Chapter 6: Graphics 42

6.3.1 Arguments and parameters

There is an unfortunate confusion between some of the graphical parameters (as set by par)
and arguments to base graphic functions of the same name. This description may help set the
record straight.

Most of the high-level plotting functions accept graphical parameters as additional arguments,
which are then often passed to lower-level functions if not already named arguments (which is
the main source of confusion).

Graphical parameter bg is the background colour of the plot. Argument bg refers to the fill
colour for the filled symbols 21 to 25. It is an argument to the function plot.xy, but normally
passed by the default method of points, often from a plot method.

Graphics parameters cex, col, 1ty, lwd and pch also appear as arguments of plot.xy and
so are often passed as arguments from higher-level plot functions such as lines, points and
plot methods. They appear as arguments of legend, col, 1ty and 1lwd are arguments of arrows
and segments. When used as arguments they can be vectors, recycled to control the various
lines, points and segments. When set a graphical parameters they set the default rendering: in
addition par (cex=) sets the overall character expansion which subsequent calls (as arguments
or on-line graphical parameters) multiply.

The handling of missing values differs in the two classes of uses. Generally these are errors
when used in par but cause the corresponding element of the plot to be omitted when used as
an element of a vector argument. Originally the interpretation of arguments was mainly left
to the device, but as from R 3.0.0 some of this is pre-empted in the graphics engine (but for
example the handling of 1wd = 0 remains device-specific, with some interpreting it as a ‘thinnest
possible’ line).

6.4 Grid graphics

[At least pointers to documentation.]

Chapter 7: GUI consoles 43

7 GUI consoles

The standard R front-ends are programs which run in a terminal, but there are several ways to
provide a GUI console.

This can be done by a package which is loaded from terminal-based R and launches a console
as part of its startup code or by the user running a specific function: package Remdr is a
well-known example with a Tk-based GUI.

There used to be a Gtk-based console invoked by R --gui=GNOME: this relied on special-
casing in the front-end shell script to launch a different executable. There still is R ——gui=Tk,
which starts terminal-based R and runs tcltk: :tkStartGui() as part of the modified startup
sequence.

However, the main way to run a GUI console is to launch a separate program which runs
embedded R: this is done by Rgui.exe on Windows and R.app on OS X. The first is an integral
part of R and the code for the console is currently in R.d11.

7.1 R.app

R.app is a OS X application which provides a console. Its sources are a separate project!, and its
binaries link to an R installation which it runs as a dynamic library 1ibR.dylib. The standard
CRAN distribution of R for OS X bundles the GUI and R itself, but installing the GUI is optional
and either component can be updated separately.

R.app relies on 1ibR.dylib being in a specific place, and hence on R having been built and in-
stalled as a Mac OS X ‘framework’. Specifically, it uses /Library/Frameworks/R.framework/R.
This is a symbolic link, as frameworks can contain multiple versions of R. It eventually resolves to
/Library/Frameworks/R.framework/Versions/Current/Resources/lib/1ibR.dylib, which
is (in the CRAN distribution) a ‘fat’ binary containing multiple sub-architectures.

OS X applications are directory trees: each R.app contains a front-end written in Objective-
C for one sub-architecture: in the standard distribution there are separate applications for 32-
and 64-bit Intel architectures.

Originally the R sources contained quite a lot of code used only by the OS X GUI, but by R
3.0.0 this was been migrated to the R.app sources.

R.app starts R as an embedded application with a command-line which includes --gui=aqua
(see below). It uses most of the interface pointers defined in the header Rinterface.h, plus
a private interface pointer in file src/main/sysutils.c. It adds an environment it names
tools:RGUI to the second position in the search path. This contains a number of utility functions
used to support the menu items, for example package.manager(), plus functions q() and
quit () which mask those in package base—the custom versions save the history in a way specific
to R.app.

There is a configure option --with-aqua for R which customizes the way R is built: this
is distinct from the --enable-R-framework option which causes make install to install R as
the framework needed for use with R.app. (The option --with-aqua is the default on OS X.)
It sets the macro HAVE_AQUA in config.h and the make variable BUILD_AQUA_TRUE. These have
several consequences:

e The quartz() device is built (other than as a stub) in package grDevices: this needs an
Objective-C compiler. Then quartz() can be used with terminal R provided the latter has
access to the OS X screen.

e File src/unix/aqua.c is compiled. This now only contains an interface pointer for the
quartz() device(s).

1 an Xcode project, in SVN at https://svn.r-project.org/R-packages/trunk/Mac-GUI.

http://CRAN.R-project.org/package=Rcmdr
https://svn.r-project.org/R-packages/trunk/Mac-GUI

Chapter 7: GUI consoles 44

e capabilities("aqua") is set to TRUE.
e The default path for a personal library directory is set as “/Library/R/x.y/library.
e There is support for setting a ‘busy’ indicator whilst waiting for system() to return.

e R_ProcessEvents is inhibited in a forked child from package parallel. The associated
callback in R.app does things which should not be done in a child, and forking forks the
whole process including the console.

e There is support for starting the embedded R with the option --gui=aqua: when this is
done the global C variable useaqua is set to a true value. This has consequences:

e The R session is asserted to be interactive via R_Interactive.

e .Platform$GUI is set to "AQUA". That has consequences:
e The environment variable DISPLAY is set to ‘:0’ if not already set.
e /usr/local/bin is appended to PATH since that is where gfortran is installed.
e The default HTML browser is switched to the one in R.app.

e Various widgets are switched to the versions provided in R.app: these include
graphical menus, the data editor (but not the data viewer used by View()) and
the workspace browser invoked by browseEnv ().

e The grDevices package when loaded knows that it is being run under R.app and
so informs any quartz devices that a Quartz event loop is already running.

e The use of the OS’s system function (including by system() and system2(), and to
launch editors and pagers) is replaced by a version in R.app (which by default just calls
the OS’s system with various signal handlers reset).

e If either R was started by —-—gui=aqua or R is running in a terminal which is not of type
‘dumb’, the standard output to files stdout and stderr is directed through the C function
Rstd_WriteConsoleEx. This uses ANSI terminal escapes to render lines sent to stderr as
bold on stdout.

e For historical reasons the startup option -psn is allowed but ignored. (It seems that in
2003, ‘r27492’, this was added by Finder.)

Chapter 8: Tools 45

8 Tools

The behavior of R CMD check can be controlled through a variety of command line arguments
and environment variables.

There is an internal --install=value command line argument not shown by R CMD check
—--help, with possible values

check:file

fake
skip

no

Assume that installation was already performed with stdout/stderr to file, the con-
tents of which need to be checked (without repeating the installation). This is useful
for checks applied by repository maintainers: it reduces the check time by the in-
stallation time given that the package has already been installed. In this case, one
also needs to specify where the package was installed to using command line option
--library.

Fake installation, and turn off the run-time tests.
Skip installation, e.g., when testing recommended packages bundled with R.

The same as ——no-install : turns off installation and the tests which require the
package to be installed.

The following environment variables can be used to customize the operation of check: a
convenient place to set these is the check environment file (default, ~/.R/check.Renviron).

_R_CHECK_ALL_NON_ISO_C_

If true, do not ignore compiler (typically GCC) warnings about non ISO C code
in system headers. Note that this may also show additional ISO C++ warnings.
Default: false.

_R_CHECK_FORCE_SUGGESTS_

If true, give an error if suggested packages are not available. Default: true (but false
for CRAN submission checks).

_R_CHECK_RD_CONTENTS_

If true, check Rd files for auto-generated content which needs editing, and missing
argument documentation. Default: true.

_R_CHECK_RD_LINE_WIDTHS_

If true, check Rd line widths in usage and examples sections. Default: false (but
true for CRAN submission checks).

_R_CHECK_RD_STYLE_

If true, check whether Rd usage entries for S3 methods use the full function name
rather than the appropriate \method markup. Default: true.

_R_CHECK_RD_XREFS_

If true, check the cross-references in .Rd files. Default: true.

_R_CHECK_SUBDIRS_NOCASE_

If true, check the case of directories such as R and man. Default: true.

_R_CHECK_SUBDIRS_STRICT_

Initial setting for -—check-subdirs. Default: ‘default’ (which checks only tarballs,
and checks in the src only if there is no configure file).

_R_CHECK_USE_CODETOOLS_

If true, make use of the codetools package, which provides a detailed analysis of
visibility of objects (but may give false positives). Default: true.

http://CRAN.R-project.org/package=codetools

Chapter 8: Tools 46

_R_CHECK_USE_INSTALL_LOG_
If true, record the output from installing a package as part of its check to a log file
(00install.out by default), even when running interactively. Default: true.

_R_CHECK_VIGNETTES_NLINES_
Maximum number of lines to show at the bottom of the output when reporting
errors in running vignettes. Default: 10.

_R_CHECK_CODOC_S4_METHODS _
Control whether codoc() testing is also performed on S4 methods. Default: true.

_R_CHECK_DOT_INTERNAL_
Control whether the package code is scanned for .Internal calls, which should only
be used by base (and occasionally by recommended) packages. Default: true.

_R_CHECK_EXECUTABLES_
Control checking for executable (binary) files. Default: true.

_R_CHECK_EXECUTABLES_EXCLUSIONS_
Control whether checking for executable (binary) files ignores files listed in the
package’s BinaryFiles file. Default: true (but false for CRAN submission checks).
However, most likely this package-level override mechanism will be removed even-
tually.

_R_CHECK_PERMISSIONS_
Control whether permissions of files should be checked. Default: true iff
.Platform$0S.type == "unix".

_R_CHECK_FF_CALLS_
Allows turning off checkFF() testing. If set to ‘registration’, checks
the registration information (number of arguments, correct choice of
.C/.Fortran/.Call/.External) for such calls provided the package is installed.
Default: true.

_R_CHECK_FF_DUP_
Controls checkFF (check_DUP) Default: true (and forced to be true for CRAN sub-
mission checks).

_R_CHECK_LICENSE_
Control whether/how license checks are performed. A possible value is ‘maybe’
(warn in case of problems, but not about standardizable non-standard license specs).
Default: true.

_R_CHECK_RD_EXAMPLES_T_AND_F_
Control whether check_T_and_F() also looks for “bad” (global) ‘T’/‘F’ uses in ex-
amples. Off by default because this can result in false positives.

_R_CHECK_RD_CHECKRD_MINLEVEL_
Controls the minimum level for reporting warnings from checkRd. Default: -1.

_R_CHECK_XREFS_REPOSITORIES_
If set to a non-empty value, a space-separated list of repositories to use to determine
known packages. Default: empty, when the CRAN, Omegahat and Bioconductor
repositories known to R is used.

_R_CHECK_SRC_MINUS_W_IMPLICIT_
Control whether installation output is checked for compilation warnings about
implicit function declarations (as spotted by GCC with command line option
-Wimplicit-function-declaration, which is implied by -Wall). Default: false.

Chapter 8: Tools 47

_R_CHECK_SRC_MINUS_W_UNUSED_
Control whether installation output is checked for compilation warnings about un-
used code constituents (as spotted by GCC with command line option -Wunused,
which is implied by -Wall). Default: true.

_R_CHECK_WALL_FORTRAN_
Control whether gfortran 4.0 or later -Wall warnings are used in the analysis of
installation output. Default: false, even though the warnings are justifiable.

_R_CHECK_ASCII_CODE_
If true, check R code for non-ascii characters. Default: true.

_R_CHECK_ASCII_DATA_
If true, check data for non-ascii characters. Default: true.

_R_CHECK_COMPACT_DATA_
If true, check data for ascii and uncompressed saves, and also check if using bzip2
or xz compression would be significantly better. Default: true.

_R_CHECK_SKIP_ARCH_
Comma-separated list of architectures that will be omitted from checking in a multi-
arch setup. Default: none.

_R_CHECK_SKIP_TESTS_ARCH_
Comma-separated list of architectures that will be omitted from running tests in a
multi-arch setup. Default: none.

_R_CHECK_SKIP_EXAMPLES_ARCH_
Comma-separated list of architectures that will be omitted from running examples
in a multi-arch setup. Default: none.

_R_CHECK_VC_DIRS_
Should the unpacked package directory be checked for version-control directories
(CVS, .svn ...)? Default: true for tarballs.

_R_CHECK_PKG_SIZES_
Should du be used to find the installed sizes of packages? R CMD check does check
for the availability of du. but this option allows the check to be overruled if an
unsuitable command is found (including one that does not respect the -k flag to
report in units of 1Kb, or reports in a different format — the GNU, OS X and Solaris
du commands have been tested). Default: true if du is found.

_R_CHECK_DOC_SIZES_
Should qpdf be used to check the installed sizes of PDFs? Default: true if qpdf is
found.

_R_CHECK_DOC_SIZES2_
Should gs be used to check the installed sizes of PDFs? This is slower than (and in
addition to) the previous check, but does detect figures with excessive detail (often
hidden by over-plotting) or bitmap figures with too high a resolution. Requires
that R_GSCMD is set to a valid program, or gs (or on Windows, gswin32.exe or
gswinb4c.exe) is on the path. Default: false (but true for CRAN submission
checks).

_R_CHECK_ALWAYS_LOG_VIGNETTE_QUTPUT_
By default the output from running the R code in the vignettes is kept only if there
is an error. Default: false.

_R_CHECK_CLEAN_VIGN_TEST_
Should the vign_test directory be removed if the test is successful? Default: true.

Chapter 8: Tools 48

_R_CHECK_REPLACING_IMPORTS_
Should warnings about replacing imports be reported? These sometimes come from
auto-generated NAMESPACE files in other packages, but most often from importing
the whole of a namespace rather than using importFrom. Default: false (but true
for CRAN submission checks).

_R_CHECK_UNSAFE_CALLS_
Check for calls that appear to tamper with (or allow tampering with) already loaded
code not from the current package: such calls may well contravene CRAN policies.
Default: true.

_R_CHECK_TIMINGS_

Optionally report timings for installation, examples, tests and running/re-building
vignettes as part of the check log. The format is ‘[as/bs]’ for the total CPU time
(including child processes) ‘a’ and elapsed time ‘b’, except on Windows, when it is
‘[bs]’. In most cases timings are only given for ‘OK’ checks. Times with an elapsed
component over 10 mins are reported in minutes (with abbreviation ‘m’). The value
is the smallest numerical value in elapsed seconds that should be reported: non-
numerical values indicate that no report is required, a value of ‘0’ that a report is
always required. Default: "". (10 for CRAN checks.)

_R_CHECK_INSTALL_DEPENDS_
If set to a true value and a test installation is to be done, this is done with
.libPaths() containing just a temporary library directory and .Library. The
temporary library is populated by symbolic links' to the installed copies of all the
Depends/Imports/LinkingTo packages which are not in .Library. Default: false
(but true for CRAN submission checks).

Note that this is actually implemented in R CMD INSTALL, so it is available to those
who first install recording to a log, then call R CMD check.

_R_CHECK_DEPENDS_ONLY _

_R_CHECK_SUGGESTS_ONLY _
If set to a true value, running examples, tests and vignettes is done with
.1libPaths() containing just a temporary library directory and .Library. The
temporary library is populated by symbolic links? to the installed copies of all
the Depends/Imports and (for the second only) Suggests packages which are not
in .Library. Default: false (but _R_CHECK_SUGGESTS_ONLY_ is true for CRAN
checks).

_R_CHECK_NO_RECOMMENDED _
If set to a true value, augment the previous checks to make recommended packages
unavailable unless declared. Default: false (but true for CRAN submission checks).

This may give false positives on code which uses grDevices::densCols and
stats:::asSparse as these invoke KernSmooth and Matrix respectively.

_R_CHECK_CODETOOLS_PROFILE_
A string with comma-separated name=value pairs (with value a logical constant)
giving additional arguments for the codetools functions used for analyzing package
code. E.g., use _R_CHECK_CODETOOLS_PROFILE_="suppressLocalUnused=FALSE"
to turn off suppressing warnings about unused local variables. Default: no additional
arguments, corresponding to using skipWith = TRUE, suppressPartialMatchArgs
= FALSE and suppressLocalUnused = TRUE.

1 under Windows, junction points, or copies if environment variable R_WIN_NO_JUNCTIONS has a non-empty

value.

2 see the previous footnote.

http://CRAN.R-project.org/package=KernSmooth
http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=codetools

Chapter 8: Tools 49

_R_CHECK_CRAN_INCOMING_
Check whether package is suitable for publication on CRAN. Default: false, except
for CRAN submission checks.

_R_CHECK_XREFS_USE_ALIASES_FROM_CRAN_
When checking anchored Rd xrefs, use Rd aliases from the CRAN package web areas
in addition to those in the packages installed locally. Default: false.

_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_
Make the checks of compiled code more accurate by recording the symbol tables for
objects (.o files) at installation in a file symbols.rds. (Only currently supported
on Linux, Solaris, OS X, Windows and FreeBSD.) Default: true.

_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_
Should the package code be checked for assignments to the global environment?
Default: false (but true for CRAN submission checks).

_R_CHECK_CODE_ATTACH_
Should the package code be checked for calls to attach()? Default: false (but true
for CRAN submission checks).

_R_CHECK_CODE_DATA_INTO_GLOBALENV_
Should the package code be checked for calls to data() which load into the global
environment? Default: false (but true for CRAN submission checks).

_R_CHECK_DOT_FIRSTLIB_
Should the package code be checked for the presence of the obsolete function
First.1ib()? Default: false (but true for CRAN submission checks).

_R_CHECK_DEPRECATED_DEFUNCT_
Should the package code be checked for the presence of recently deprecated or de-
funct functions (including completely removed functions). Also for platform-specific
graphics devices. Default: false (but true for CRAN submission checks).

_R_CHECK_SCREEN_DEVICE_
If set to ‘warn’, give a warning if examples etc open a screen device. If set to ‘stop’,
give an error. Default: empty (but ‘stop’ for CRAN submission checks).

_R_CHECK_WINDOWS_DEVICE_
If set to ‘stop’, give an error if a Windows-only device is used in example etc. This
is only useful on Windows: the devices do not exist elsewhere. Default: empty (but
‘stop’ for CRAN submission checks on Windows).

_R_CHECK_TOPLEVEL_FILES_
Report on top-level files in the package sources that are not described in ‘Writing
R Extensions’ nor are commonly understood (like ChangeLog). Variations on stan-
dard names (e.g. COPYRIGHT) are also reported. Default: false (but true for CRAN
submission checks).

_R_CHECK_GCT_N_
Should the -—use-gct use gctorture2(n) rather than gctorture(TRUE)? Use to
a positive integer to enable this. Default: 0.

_R_CHECK_LIMIT_CORES_
If set, check the usage of too many cores in package parallel. If set to ‘warn’ gives a
warning, to ‘false’ or ‘FALSE’ the check is skipped, and any other non-empty value

gives an error when more than 2 children are spawned. Default: unset (but ‘TRUE’
for CRAN submission checks).

Chapter 8: Tools 50

CRAN’s submission checks use something like

_R_CHECK_CRAN_INCOMING_=TRUE
_R_CHECK_VC_DIRS_=TRUE
_R_CHECK_TIMINGS_=10
_R_CHECK_INSTALL_DEPENDS_=TRUE
_R_CHECK_SUGGESTS_ONLY_=TRUE
_R_CHECK_NO_RECOMMENDED_=TRUE
_R_CHECK_EXECUTABLES_EXCLUSIONS_=FALSE
_R_CHECK_DOC_SIZES2_=TRUE
_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_=TRUE
_R_CHECK_CODE_ATTACH_=TRUE
_R_CHECK_CODE_DATA_INTO_GLOBALENV_=TRUE
_R_CHECK_DOT_FIRSTLIB_=TRUE
_R_CHECK_DEPRECATED_DEFUNCT_=TRUE
_R_CHECK_REPLACING_IMPORTS_=TRUE
_R_CHECK_SCREEN_DEVICE_=stop
_R_CHECK_TOPLEVEL_FILES_=TRUE

These are turned on by R CMD check --as-cran: the incoming checks also use
_R_CHECK_FORCE_SUGGESTS_=FALSE

since some packages do suggest other packages not available on CRAN or other commonly-used
repositories.

Chapter 9: R coding standards 51

9 R coding standards

R is meant to run on a wide variety of platforms, including Linux and most variants of Unix
as well as Windows and OS X. Therefore, when extending R by either adding to the R base
distribution or by providing an add-on package, one should not rely on features specific to only
a few supported platforms, if this can be avoided. In particular, although most R developers
use GNU tools, they should not employ the GNU extensions to standard tools. Whereas some
other software packages explicitly rely on e.g. GNU make or the GNU C++ compiler, R does
not. Nevertheless, R is a GNU project, and the spirit of the GNU Coding Standards should be
followed if possible.

The following tools can “safely be assumed” for R extensions.

e An ISO C99 C compiler. Note that extensions such as POSIX 1003.1 must be tested for, typ-
ically using Autoconf unless you are sure they are supported on all mainstream R platforms
(including Windows and OS X).

e A FORTRAN 77 compiler (but not Fortran 9x, although it is nowadays widely available).
e A simple make, considering the features of make in 4.2 BSD systems as a baseline.

GNU or other extensions, including pattern rules using ‘%’, the automatic variable ‘$~’, the
‘+=’ syntax to append to the value of a variable, the (“safe”) inclusion of makefiles with no
error, conditional execution, and many more, must not be used (see Chapter “Features” in
the GNU Make Manual for more information). On the other hand, building R in a separate
directory (not containing the sources) should work provided that make supports the VPATH
mechanism.

Windows-specific makefiles can assume GNU make 3.79 or later, as no other make is viable
on that platform.

e A Bourne shell and the “traditional” Unix programming tools, including grep, sed, and
awk.

There are POSIX standards for these tools, but these may not be fully supported. Baseline
features could be determined from a book such as The UNIX Programming Environment
by Brian W. Kernighan & Rob Pike. Note in particular that ‘|’ in a regexp is an extended
regexp, and is not supported by all versions of grep or sed. The Open Group Base Spec-
ifications, Issue 7, which are technically identical to IEEE Std 1003.1 (POSIX), 2008, are
available at http://pubs.opengroup.org/onlinepubs/9699919799/mindex.html.

Under Windows, most users will not have these tools installed, and you should not require
their presence for the operation of your package. However, users who install your package
from source will have them, as they can be assumed to have followed the instructions in “the
Windows toolset” appendix of the “R Installation and Administration” manual to obtain them.
Redirection cannot be assumed to be available via system as this does not use a standard shell
(let alone a Bourne shell).

In addition, the following tools are needed for certain tasks.

e Perl version 5 is only needed for a few uncommonly-used tools: make install-info needs
Perl installed if there is no command install-info on the system, and for the maintainer-
only script tools/help2man.pl.

e Makeinfo version 4.7 or later is needed to build the Info files for the R manuals written in
the GNU Texinfo system.

It is also important that code is written in a way that allows others to understand it. This
is particularly helpful for fixing problems, and includes using self-descriptive variable names,
commenting the code, and also formatting it properly. The R Core Team recommends to use
a basic indentation of 4 for R and C (and most likely also Perl) code, and 2 for documentation

http://pubs.opengroup.org/onlinepubs/9699919799/mindex.html

Chapter 9: R coding standards 52

in Rd format. Emacs (21 or later) users can implement this indentation style by putting the
following in one of their startup files, and using customization to set the c-default-style to
"bsd" and c-basic-offset to 4.)

;55 ESS
(add-hook ’ess-mode-hook
(lambda ()
(ess-set-style ’C++ ’quiet)
;; Because

HA DEF GNU BSD K&R C++
;; ess-indent-level 2 2 8 5 4

;; ess-continued-statement-offset 2 2 8 5 4
;; ess-brace-offset 0 0 -8 -5 -4
;; ess—arg-function-offset 2 4 0 0 0
;; ess—expression-offset 4 2 8 5 4
;; ess-else-offset 0 0 0 0 0
;; ess-close-brace-offset 0 0 0 0 0

(add-hook ’local-write-file-hooks
(lambda ()
(ess-nuke-trailing-whitespace)))))
(setq ess—nuke-trailing-whitespace-p ’ask)
;3 or even
;3 (setq ess-nuke-trailing-whitespace-p t)
;35 Perl
(add-hook ’perl-mode-hook
(lambda () (setq perl-indent-level 4)))

(The ‘GNU’ styles for Emacs’ C and R modes use a basic indentation of 2, which has been
determined not to display the structure clearly enough when using narrow fonts.)

Chapter 10: Testing R code 53

10 Testing R code

When you (as R developer) add new functions to the R base (all the packages distributed with R),
be careful to check if make test-Specific or particularly, cd tests; make no-segfault.Rout
still works (without interactive user intervention, and on a standalone computer). If the new
function, for example, accesses the Internet, or requires GUI interaction, please add its name to
the “stop list” in tests/no-segfault.Rin.

[To be revised: use make check-devel, check the write barrier if you change internal struc-
tures.|

Chapter 11: Use of TeX dialects 54

11 Use of TeX dialects

Various dialects of TeX and used for different purposes in R. The policy is that manuals be
written in ‘texinfo’, and for convenience the main and Windows FAQs are also. This has the
advantage that is is easy to produce HTML and plain text versions as well as typeset manuals.

KTEX is not used directly, but rather as an intermediate format for typeset help documents
and for vignettes.

Care needs to be taken about the assumptions made about the R user’s system: it may
not have either ‘texinfo’ or a TeX system installed. We have attempted to abstract out
the cross-platform differences, and almost all the setting of typeset documents is done by
tools::texi2dvi. This is used for offline printing of help documents, preparing vignettes
and for package manuals via R CMD Rd2pdf. It is not currently used for the R manuals created
in directory doc/manual.

tools: :texi2dvi makes use of a system command texi2dvi where available. On a Unix-
alike this is usually part of ‘texinfo’, whereas on Windows if it exists at all it would be an
executable, part of MiKTeX. If none is available, the R code runs a sequence of (pdf)latex,
bibtex and makeindex commands.

This process has been rather vulnerable to the versions of the external software used: par-
ticular issues have been texi2dvi and texinfo.tex updates, mismatches between the two?,
versions of the IXTEX package ‘hyperref’ and quirks in index production. The licenses used
for ITEX and latterly ‘texinfo’ prohibit us from including ‘known good’ versions in the R
distribution.

On a Unix-alike configure looks for the executables for TeX and friends and if found records
the absolute paths in the system Renviron file. This used to record ‘false’ if no command was
found, but it nowadays records the name for looking up on the path at run time. The latter can
be important for binary distributions: one does not want to be tied to, for example, TeX Live
2007.

I Linux distributions tend to unbundle texinfo.tex from ‘texinfo’.

Chapter 12: Current and future directions 55

12 Current and future directions

This chapter is for notes about possible in-progress and future changes to R: there is no com-
mitment to release such changes, let alone to a timescale.

12.1 Long vectors

Vectors in R 2.x.y were limited to a length of 2731 - 1 elements (about 2 billion), as the length
is stored in the SEXPREC as a C int, and that type is used extensively to record lengths and
element numbers, including in packages.

Note that longer vectors are effectively impossible under 32-bit platforms because of their
address limit, so this section applies only on 64-bit platforms. The internals are unchanged on
a 32-bit build of R.

A single object with 2731 or more elements will take up at least 8GB of memory if integer
or logical and 16GB if numeric or character, so routine use of such objects is still some way off.

There is now some support for long vectors. This applies to raw, logical, integer, numeric and
character vectors, and lists and expression vectors. (Elements of character vectors (CHARSXPs)
remain limited to 2731 - 1 bytes.) Some considerations:

e This has been implemented by recording the length (and true length) as -1 and recording
the actual length as a 64-bit field at the beginning of the header. Because a fair amount of
code in R uses a signed type for the length, the ‘long length’ is recorded using the signed
C99 type ptrdiff_t, which is typedef-ed to R_xlen_t.

e These can in theory have 63-bit lengths, but note that current 64-bit OSes do not even
theoretically offer 64-bit address spaces and there is currently a 52-bit limit (which exceeds
the theoretical limit of current OSes and ensures that such lengths can be stored exactly in
doubles).

e The serialization format has been changed to accommodate longer lengths, but vectors
of lengths up to 2731-1 are stored in the same way as before. Longer vectors have their
length field set to -1 and followed by two 32-bit fields giving the upper and lower 32-bits
of the actual length. There is currently a sanity check which limits lengths to 2748 on
unserialization.

e The type R_xlen_t is made available to packages in C header Rinternals.h: this should
be fine in C code since C99 is required. People do try to use R internals in C++, but
C++98 compilers are not required to support these types (and there are currently no C++11
compilers).

e Indexing can be done via the use of doubles. The internal indexing code used to work
with positive integer indices (and negative, logical and matrix indices were all converted to
positive integers): it now works with either INTSXP or REALSXP indices.

e R function length was documented to currently return an integer, possibly NA. A lot of code
has been written that assumes that, and even code which calls as.integer (length(x))
before passing to .C/.Fortran rarely checks for an NA result.

There is a new function xlength which works for long vectors and returns a double value
if the length exceeds 2731-1. At present length returns NA for long vectors, but it may be
safer to make that an error.

12.2 64-bit types

There is also some desire to be able to store larger integers in R, although the possibility of storing
these as double is often overlooked (and e.g. file pointers as returned by seek are already stored
as double).

Different routes have been proposed:

Chapter 12: Current and future directions 56

e Add anew type to R and use that for lengths and indices—most likely this would be a 64-bit
signed type, say longint. R’s usual implicit coercion rules would ensure that supplying an
integer vector for indexing or length<- would work.

e A more radical alternative is to change the existing integer type to be 64-bit on 64-bit
platforms (which was the approach taken by S-PLUS for DEC/Compaq Alpha systems).
Or even on all platforms.

e Allow either integer or double values for lengths and indices, and return double only
when necessary.

The third has the advantages of minimal disruption to existing code and not increasing
memory requirements. In the first and third scenarios both R’s own code and user code would
have to be adapted for lengths that were not of type integer, and in the third code branches
for long vectors would be tested rarely.

Most users of the .C and .Fortran interfaces use as.integer for lengths and element num-
bers, but a few omit these in the knowledge that these were of type integer. It may be
reasonable to assume that these are never intended to be used with long vectors.

The remaining interfaces will need to cope with the changed VECTOR_SEXPREC types. It seems
likely that in most cases lengths are accessed by the length and LENGTH functions® The current
approach is to keep these returning 32-bit lengths and introduce ‘long’ versions xlength and
XLENGTH which return R_xlen_t values.

See also http://www.cs.uiowa.edu/ luke/talks/useR10.pdf.

12.3 Large matrices

Matrices are stored as vectors and so were also limited to 2731-1 elements. Now longer vectors
are allowed, matrices with more elements are supported provided that each of the dimensions is
no more than 2°31-1. However, not all applications can be supported.

The main problem is linear algebra done by FORTRAN code compiled with 32-bit INTEGER.
Although not guaranteed, it seems that all the compilers currently used with R on a 64-bit
platform allow matrices each of whose dimensions is less than 2731 but with more than 2°31
elements, and index them correctly, and a substantial part of the support software (such as
BLAS and LAPACK) also work.

There are exceptions: for example some complex LAPACK auxiliary routines do use a single
INTEGER index and hence overflow silently and segfault or give incorrect results. One example
is svd() on a complex matrix.

Since this is implementation-dependent, it is possible that optimized BLAS and LAPACK may
have further restrictions, although none have yet been encountered. For matrix algebra on large
matrices one almost certainly wants a machine with a lot of RAM (100s of gigabytes), many
cores and a multi-threaded BLAS.

I hut LENGTH is a macro under some internal uses.

http://www.cs.uiowa.edu/~luke/talks/useR10.pdf

Function and variable index

Function and variable index

DEVACE. it 19
Devices .. e 19
Internal .o 22
Last.value . .o e 19
L0ptions ... 19
Primitive ... 22
.Random.seed......... 19
.SavedPlotS . it e 19
TracebacKk . ..o 19
_R_CHECK_ALL_NON_ISO_C_......ovvviiinninnnnnn. 45
_R_CHECK_ALWAYS_LOG_VIGNETTE_QUTPUT_ 47
_R_CHECK_ASCII_CODE_......ciiiiiinanenanannnn. 47
_R_CHECK_ASCII _DATA _...... 0., 47
_R_CHECK_CLEAN_VIGN_TEST_.............cvon... 47
_R_CHECK_CODE_ASSIGN_TO_GLOBALENV_ 49
_R_CHECK_CODE_ATTACH_c0viiiiiiiinnnnn. 49
_R_CHECK_CODE_DATA_INTO_GLOBALENV_ 49
_R_CHECK_CODETOOLS_PROFILE_................... 48
_R_CHECK_CODOC_S4_METHODS_.........ccvvvnunn.. 46
_R_CHECK_COMPACT _DATA_ 47
_R_CHECK_CRAN_INCOMING_ovvvueunenennnn. 49
_R_CHECK_DEPENDS_ONLY_ouviniinennnn.. 48
_R_CHECK_DEPRECATED _DEFUNCT_ 49
_R_CHECK_DOC_SIZES _........ciiiiiitiinnnnnn. 47
_R_CHECK_DOC_SIZES2_........coiiiiiirininenen.. 47
_R_CHECK_DOT_FIRSTLIB_ccovvirininenan.. 49
_R_CHECK_DOT_INTERNAL_ccivirininenan.. 46
_R_CHECK_EXECUTABLES_ccoiuiiiiiinennn. 46
_R_CHECK_EXECUTABLES_EXCLUSIONS_............. 46
_R_CHECK_FF_CALLS ...ttt it 46
_R_CHECK_FF_DUP_ ... ittt iii e 46
_R_CHECK_FORCE_SUGGESTS_coivviunnn.. 45
_R_CHECK_GCT_N_ ...ttt 49
_R_CHECK_INSTALL_DEPENDS_..............ouvu.n. 48
_R_CHECK_LICENSEcitiiiiiiiiininnnnnnn 46
_R_CHECK_LIMIT_CORES_civiririinennnnn. 49
_R_CHECK_NO_RECOMMENDED_covvvuvennn.. 48
_R_CHECK_PERMISSIONS_ciiiiiiiiinnnnnnn. 46
_R_CHECK_PKG_SIZES _....... .00ttt 47
_R_CHECK_RD_CHECKRD_MINLEVEL_................ 46
_R_CHECK_RD_CONTENTS_cititiiiinnnnnn, 45
_R_CHECK_RD_EXAMPLES_T_AND_F_ 46
_R_CHECK_RD_LINE_WIDTHS_...........cccouvn.... 45
_R_CHECK_RD_STYLE _......c.iiiiiiiiininnann.. 45
_R_CHECK_RD_XREFS_ i, 45
_R_CHECK_REPLACING_IMPORTS_...........cccu.... 48
_R_CHECK_SCREEN_DEVICE_............c.cvvuvnnn. 49
_R_CHECK_SKIP_ARCH_....... ...ttt 47
_R_CHECK_SKIP_EXAMPLES_ARCH_ 47
_R_CHECK_SKIP_TESTS_ARCH_..................... 47
_R_CHECK_SRC_MINUS_W_IMPLICIT_............... 46
_R_CHECK_SRC_MINUS_W_UNUSED_ 47
_R_CHECK_SUBDIRS_NOCASE_........cccvviiirinnn.. 45
_R_CHECK_SUBDIRS_STRICT_...........covuvnnn.. 45
_R_CHECK_SUGGESTS_ONLY_c.cvvivriinvnn... 48
_R_CHECK_TIMINGS citiiiiiinnann 48
_R_CHECK_TOPLEVEL_FILES_..........cccovvuinnn.. 49

57
_R_CHECK_UNSAFE_CALLS_c.iviriiinennn.. 48
_R_CHECK_USE_CODETOOLS_covtiiinenan, 45
_R_CHECK_USE_INSTALL_LOG_............ovuvu.n. 46
_R_CHECK_VC_DIRS _.....ciiiitiiiiiininnnnnnnn 47
_R_CHECK_VIGNETTES_NLINES_.................... 46
_R_CHECK_WALL_FORTRAN_, 47
_R_CHECK_WINDOWS _DEVICE_..........cccvviuennn.. 49
_R_CHECK_XREFS_REPOSITORIES_ 46
_R_CHECK_XREFS_USE_ALIASES_FROM_CRAN_....... 49
_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_....... 49
B110Ca . et e 18
ARGSUSED . ..ottt e e e 3
ATTRIB . . o e 7
attribute_hidden.............., 20
CalloC . ittt et 18
copyMostAttributes............ it 7
DDV AL .. e 3
debug bit....... ... 2
DispatchGeneric................................ 10
DispatchOrEval 10
dump.frames............... ... il 19
DUPLICATE_ATTRIB ..ottt i ieieieen 7
=3 11 Yo = PP 52
[T e PP 15
errorcCall 15
Free .. .o 18
gpbits............. 3
InVisible ...t 11
last.warning............... ...l 19
LEVEL S . o e 3
AR o\ttt et e 51
makeinfo e 51

Function and variable index

R

R_alloC. .
R_AllocStringBuffer............................
R_BaseNamespacecooiiiiiiinniinnn..
R_CheckStack...........oiiiiiiii i,
R_CheckStack2.......... ...,
R_FreeStringBuffer.............................
R_FreeStringBufferL............................
R_MissingArg............ ...,
R_Visibleot
Rdll.hide ...t i
RealloC. ..ot e

58
SET_ARGUSEDttt e e ea 3
SET _ATTRIB ..ottt e et 7
SET _DDVAL ..ottt 3
SET _MISSINGointit ittt ittt e einnnn 3
SET_NAMED . ..ottt e e 2
SETLEVELS . .. e e e 3
spare bit...... ... i il 2
trace bit.......oiiiiii 2
UseMethodc.ooiiiniiui i 9
VIAXEZET . o oo 18
VIAXSET . oottt 18
Warning. 15

warningcall ... 15

Concept index

Concept index

oargument ... 3, 11
Internal function 10

A

allocation classes............ooiiiiiiiii 5
argument evaluation................... 9
argument list....... 2
atomic vector type i i 2
attributes. ... 7
attributes, preserving............... .l 7
autoprinting o oo 11

B

base environment, 5, 19
base namespace ...t 6
builtin function oL 10

C

coding standards.............. i 51
context ... 8
copying semanticseeiiiiiiiiiiiiian 2,7

E

environmento i 5
environment, base 5, 19
environment, global oL 19
EXPIESSION . ..ottt 2

F

function......... .o 2

G

garbage collector........... oL 12
GENETIC, ENETIC « ..ottt t ettt 10
generic, internal oL 10
global environment...........o 19

59
L
language object i 2
M
method dispatch L 9
MISSINENESS « ¢ ot vi ettt ettt 10
modules ... 19
N
NAMESPACE -+« ¢ e ettt ettt e et e et 6
Namespace, base.ot 6
NOAE . ottt 1
P
preserving attributes i 7
primitive function............. ... oo 10
PIOMUISE . o o vttt ettt e et e 3
SA BYDPE « e 2
search path o 6
serialization............ ... o i 12
SEX P . 1
SEXPRREC ... 1
SEXPTYPE ... 1
SEXPTYPE table..........oooiiiiiiiiiii 1
special function i 10
user databases i 5
A%
variable lookup.......... ... o i 5
vector type.......o ool 4
visibilityo 20

\%\%

write barrier 12

	R Internal Structures
	SEXPs
	SEXPTYPEs
	Rest of header
	The `data'
	Allocation classes

	Environments and variable lookup
	Search paths
	Namespaces
	Hash table

	Attributes
	Contexts
	Argument evaluation
	Missingness
	Dot-dot-dot arguments

	Autoprinting
	The write barrier and the garbage collector
	Serialization Formats
	Encodings for CHARSXPs
	The CHARSXP cache
	Warnings and errors
	S4 objects
	Representation of S4 objects
	S4 classes
	S4 methods
	Mechanics of S4 dispatch

	Memory allocators
	Internals of R_alloc

	Internal use of global and base environments
	Base environment
	Global environment

	Modules
	Visibility
	Hiding C entry points
	Variables in Windows DLLs

	Lazy loading

	.Internal vs .Primitive
	Special primitives
	Special internals
	Prototypes for primitives
	Adding a primitive

	Internationalization in the R sources
	R code
	Main C code
	Windows-GUI-specific code
	OS X GUI
	Updating

	Structure of an Installed Package
	Metadata
	Help

	Files
	Graphics
	Graphics Devices
	Device structures
	Device capabilities
	Handling text
	Conventions
	`Mode'
	Graphics events
	Specific devices
	X11()
	windows()

	Colours
	Base graphics
	Arguments and parameters

	Grid graphics

	GUI consoles
	R.app

	Tools
	R coding standards
	Testing R code
	Use of TeX dialects
	Current and future directions
	Long vectors
	64-bit types
	Large matrices

	Function and variable index
	Concept index

