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Abstract— In this paper we proposea novel method of sensor
planning for a mobile robot localization problem. We represent
causal relation betweenlocal sensingresults, actions, and belief
of the global localization using a Bayesiannetwork. Initially , the
structur e of the Bayesian network is learned from the complete
data of the environment using K2 algorithm combined with GA
(genetic algorithm). In the execution phase, when the robot is
kidnapped to some place, it plans an optimal sensingaction by
taking into account the trade-off betweenthe sensingcost and
the global localization belief which is obtained by inferencein the
Bayesian network. We have validated the learning and planning
algorithm by simulation experimentsin an office environment.

INTRODUCTION

The mobile robot navigation and localizationis very tra-
ditional and fascinatingresearchtheme.Until now, a lot of
researchesiave beenfocusedon how to obtain an accurée
map, and then how to matchthe sensinginformation of the
robd to themapfor localization However, in roba navigation,
sensorinformation is prone to errorsand a slight chang of
the robot’s pose deteriorate the sensingresults. Therefae,
in the pastdecads, mary probailistic appoacheshave been
proposedto copewith uncertaity andto improve robustness
of the localization[l]. However, lesswork hasbeendore in
sensorplanningfor the localization.

Fox et al.[2] propsed an Active Markov Localization
methodfor improving the efficiengy in localization.However,
sincetheir systemis basedon the first order Markov process,
it can not repiesentcomple relation betweenactions,local
information, and globd localization KristensenB] propsed
a molle robot sensorplanring appoach basedon a top-
down decision tree algorithm. However, the utility based
Bayesian decision tree theory is too simple to catch the
causalrelationsbetweenocal sensinginformationandglobal
localization.A multiple hypothesistracking apprachhasbeen
usedin active global localization[4]. However, the Kalman
filter basedapprach mustassumemode of linear dynamcs
with Gaussiamoise.Zhou et al.[5] proposedan algorithm to
reconstrat a BN anduseit to plan efficient sensingaction
for the mobile roba localization.Sincethe systemdealswith
partial ervironmentinformation, the plannedsensingaction
may be locally optimal. Moreover, the causalrelatiors of the
BN nodeswere manuallydesigned.

In this paper we proposea sensomplannirg metha for mo-
bile roba localization.Initially, we representausalrelations

Shiggyuki Sakae
Chuo University, Tokyo, Japan
Email: sakane@inslys.chuad.ac.jp

Fig. 1. (left) A graphto representthe topology of the environment.(right)
A path (from A to A) obtaned asa solution of Chinese postmanproblem.

betweenlocal sensingresults,actions,andbelief of the global

localizationin a Bayesiannetwork (BN) structure.The BN

structure,as well asthe parametes, is learnedautomatically
from the environment datausingK2 algorithmcombned with

GA (geretic algorithm). In the execuion phase,when the
roba is kidnapedto someplace,it plansan optimal sensing
actionby takinginto accoum thetrade-df betweerthe sensing
cost and the global localization belief which is obtaine by

infererce in the BN|[6].

Il. ENVIRONMENT INFORMATION GATHERING AND BN
CONFIGURATION
A. Path for Environment Information Gathering

We perfamed the simulation expaiments in an office
ervironmen (Fig. 9). Initially, to obtaincompleteervironmert
information, the robot must navigate in all of the corridas
and intersections.We employ a framevork of the Chinese
postmanproblem[7]. The Chinesepostmanproblemrequres
finding the shortestour in a graphwhich visits every edge at
leastonce.As shavn in Fig. 1, we representhe topdogy of
the ervironmentas a grafh and searcha pathfrom A to A
usingthe next nodealgorithm[8]. Thentherobad navigatesin
all corridors and intersectios alongthe path and gathes the
ervironmen information to be usedfor localizationtasks.

B. EnvironrmentRepesentéion and BN Configuation

We defineasegment(Sg) asthe ervironment informationof
acoridor betweertwo neighoringintersectios. Onesegment
involvesfour kinds of information asfollows:

1) Two intersectionlabels,
2) Landnarks on both sidesof the corridor betweentwo
intersectios,
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Fig. 2. Mappingthe ernvironmentinformation of two neighbaing corridors
into nodesof BN.

3) Geometricfeatures of the intersectionsensedvhenthe
roba entersthe intersections,
4) Action taken by the roba whenit entersthe corridor.

In our system,we call the environment information of
two neighboring corridors an ervironmenm information set
The information of every enironmentinformation set (for
exampe, label of an intersection,geometical feature of an
intersectionetc.) correspondgo a value of nodesin BN.

We definesensingnformation asobservake variables, and
labelsof intersectionashypothesisvariables of a BN. We put
togetherall of theervironmen informationof two neighloring
corridas andsave theminto a training databaseThe datalase
is usedto learn the parametes and structue of BN. For
exampe, the training databas@btaired from the ervironmen
(Fig. 9) has138 datacasesThe BN (Fig. 4) is learnedfrom
thetraining databasen this casethe BN has13 prokabilistic
variables(hodes).As shavn in Fig. 2, the nodes,Head, Mid,
Tail, aredefinedby labelsof the entrarce intersectionmidde
intersectionandexit intersectiorof two neigtboringcorridors,
respectiely. In the expeiments, the nodesHead, Mid, Talil
have twelve possiblevalues (A4, B, ..., L). The nodes Actionl
and Action2 derote the actionswhich the roba takeswhenit
entersheadand middle intersectims, respectrely. The action
nodeshave threepossiblevalues:forward, turn left, turn right.
The nodesHf, Mf, Tf correspondto geonetric featues (such
as a range pattern)recogquized by the roba when it enters
the entrance midde, and exit intersectims, respectiely. As
shawvn in Fig. 2, thesenodeshave six possiblevalues:+, T, -
,F,— andsoon. In Fig. 2, thereare four possiblelandmarks
(hollows) in two neigtboring coridors, representedby the
nodesmp1, mpa, M1, Mea. IN the experiments,we assume
that two hollows can appear on a side of a cortidor, and the
hollows areusedaslandmaks. We definethelandnarkin alist
(geometricfeature, local distan@!). Thelandmark nodes have
four possiblevalues:“1~ 4" which denotedour layou types
of the landmak. In addition, we definea mediding variable
[6], Cn, by label of every dataset,has138 values.

I1l. LEARNING BN STRUCTURE FROM DATA

BN is adirectedagyclic graphthatrepresentsiepenlencies
betweenprobabilistic variables.An arc betweentwo nodes

1Thedistance betwea anintersectin andits neighbaing landmark,or two
neighboring landmarks

77777

Fig. 4. LearnedBN's strucure by K2 and GA

of BN represets the causalrelation betweenthe noces.
However, it is often difficult to determire the casualrelation
amongnodes.In our localization tasks,we usually do not
know whichlandmak hasdepenéng with theothernodes, so
wetakea BN structurdearnirg apprachinsteadof designing
the network structue manually

A. K2 Algorithm Combinedwith GA

We appy a structue searchmethod basedon Bayesian
score,namedthe K2 algaithm [10], to learnthe causalrela-
tion betweerlocal environnmentinformation robotaction and
globd localization The Bayesianscoreis a joint probability
P(B;, D) betweenBN structure(B,) anddatalase(D). The
K2 algorithmis a greedysearchalgoithm. Ref[1(J describes
thatthe searchspaceds too huge to evaluateall of the possible
structuresTo redue the searchspacethe K2 algorithm uses
a constraim of ordeing of noces (i.e., the causalattributesof
anock shouldappearearlierin the orde)). However, it is often
difficult to deternine the order

In our system,we emplgy a gendic algorithm(GA) to
searchthe bestorderirg as descriled in Ref. [11]. Using this
ordeing, K2 learnsthebestBN structurefrom thedata.Then
the Bayesianscoreof K2 gives a fitnessvalueto GA. The
combiration of GA and K2 iteratesuntil the averagefitness
is improved no further

B. Exampleof BN Structue Learning

Using the training databasewe attemptto learna structue
of BN. Thepopuation sizeof the G A is 80 andthealgorithm
usescrosswer and mutationoperatims. Figure 3 shovs the



convergenceof fitnessvaluewith 100 generéons. The dashed
line andsolid line in the figure shav the average andthe best
fitnessscoresof eachgeneation, respectrely. By combiring

the K2 algorithm with the GA search,we can obtain a
suboptimé orderirg of the nodesand a semi-optima BN

structureas shavn in Fig. 4.

IV. SENSOR PLANNING FOR LOCALIZATION
A. Summaryof the SensorPlanring System

The execution phaseof the planring systemconsistsof the
following threesteps:

1) Inference for localization: Initially, a mokle roba
startsnavigation from an unknavn position While the
roba is sensingin a corridor, the BN is usedto infer
thegloballocalizationbelief whenever the robot obtairs
new sensinginformation.

2) Prediction for sensorplanning: If thesensingnforma-
tion of this corrida is insufiicient for localization the
systempredictspossibleactionsandsensingnformation
to be obtainedby the actions.The sensorplamer runs
at the exit intersectionof the sensectorridor.

3) Sensorplanning for localization: Thenthe sensomplan-
ner usesthe predcted information to selectan optimal
sensingactionto perform active sensingby taking into
accoun of theglobal localization beliefandsensingost.

B. Inferencefor Localizatian

The robot starts navigation from an unkrown position
without sensor planring. The navigation basically uses a
potential method in a corridor. The roba gatlrers sens-
ing information everts, including landmaks and geometic
featuresof intersectios, in the current corridor. Then the
information events are given to the BN as evidencesto
infer global localization, i.e., which corridor the roba has
sensed.The probability of the corridor’s label is calculated
as P(Head, Mid, Tail|obtained sensing event) using the
BN.

We define belief of the global localization (TolBef) as
follows:

TolBef = (1/2) x (maxz(P(Head)) + max(P(Mid))) (1)

wheremaz(P(Head)) andmax(P(Mid)) arethe maximum
valuesof the probability of nodeH ead and M id, respectiely.
P(Head) and P(Mid) arecalculatedby the BN inference.

If TolBef > thdl, the systemterminatesthe localization
process.Becausein this case the robot can estimate the
labelsof the coriidors only by usingthe current ervironmer
information, there is no needto perfam sensorplannirg.
Otherwise(TolBef < thdl), the robot hasto move to the
next corridor to perfam active sensing.Theefore,the sensor
plannerselectsan optimd sensingactionfor the localization.

Sincethe BN of our systemis not a tree structurebut has
loopsasshavn in Fig. 4, we usethe Junctim tree algorithm
[6] to infer probabilities of the nodes.

C. Predictionfor SensorPlannirg

The sensoplannerconsistsof two processes(1) predction
and (2) planning. The prediction processpredictssomepos-
sible actionsand sensinginformation expectedto be obtained
by theseactions.The prediction algaithm hasthe following
two steps:

(1) Thefirst stepis to searchdatacasesi.e., valuesof the node
Cn, in the databasewhose probabilitis are not zerosbased
on the sensingevent obtainedfrom the just-sensedorrido?.
Thatis, the systemstoresthe node Cn’s values,which satisfy
the following condtion, in alist enl = (¢nly, enls, ...).

P(Cnlobtained sensing information) # 0;

Basedon the results,we can estimatewhich datacasein the
recordedsensingnformationdatabasés closerto the obtained
sensinginformation.

The secondstepis to predictpossibleactions(P A) andsensor
information (SI)® basedon the obtainedsensinginformation
(OSI) and the estimatedCn values The predictionis per

formed using the following probabilities:

@)

P(PA|enl,OSI) > thd2 (a)
P(SI|PA,enl,OSI) > thd2 (b)

If the valuesof (a) and (b) exceeda certainthresholdthd2,
we save the possibleactionsin a list actlist, and save the
predictedsensorinformationin a matrix Mgen.

D. SensorPlannirg Procedue

Through the prediction step,the systemobtainsactlist, a
list of possibleactionsandalsoa matrix of predictedsensing
information Mgen = (sni, sna, ..., sn,)’, Eachelementof
Me.en repesentsa predicted sensorinformation list to be
obtainel by a possibleaction (the elementof actlist). Each
predictel sensoinformationlist of Mg, is sortedin theorder
of sensingcost,i.e. the distancefrom the current intersection
to the location of the sensorinformation.

Consequetty, the sensorplannirg processselectsan opti-
mal action from actlist which allows the roba to acquie
enowgh sensingeverts to decreaseambiguity of the global
localizationbelief by takinginto accoun thetradeeoff between
the sensingcostandthe globd localization belief.

For exampe, an actlist anda Mg, areshavn in Fig. 5.
The possibleactionsare “actioril, actior?, actior3”, andthe
integers on the right side of Fig. 5 represenexpected sensor
informationto be obtaired by the actions.In the Fig. 5, each
row of the M, is onesetof the predided sensoiinformation
when taking the action on the left side. Every row of the
Mgen is sortedin ascendingrderof the sensingcost,i.e., the
sensingcostof theright entryis largerthanthat of theleft. In
the evaludion process, we usethe elementsof the M e, and
the possibleactionsto estimatethe labelsof the intersectios,
and calculatethe sensingcost. Since the robd usessensing
information of a setof two neigtboring corridors, the TolBef

2The predidion and planning processesare performedwhenthe robotis in
the middle intersecton.

3|t includeslandmaks andintersecton’s geometrt featues expectedto be
perceved whenthe robot takes the actons



shouldbe definal asthe sumof the maximum probailities of
the threeintersectionlabels.

TolBef = (1/3) % (maz(P(Head))+ maz(P(Mid))

+ maz(P(Tail))) (2)

Using the above possibleactionsand predcted sensorinfor-
mation, the systemperfams the sensorplanning which has
the following threesteps:

(1) The first stepis to use the already-oltained sensinginfor-
mation, the possible action, and sensinginformation to be
obtainedby theaction,to infer (TolBef), thebelief of theglobal
localization. In this step, we must evaluate every action and
every set of sensorinformation (every row of Mgen in Fig.
5). For example, when we evaluae “action1’ of Fig. 5 and
the correspmding sensorinformation of the three rows, the
procediresare asfollows ((a)~(d)):

a) Thesystemcreatesanemptylist (SenEvn), andpushes
theleft-mostelementf thefirst row’s sensoiinformation
into SenEvn.

b) Using the SenEvn, “action1’ and obtainedsensorin-
formation to estimatethe TolBef basedon Eqg.2 and
BN.

c)
| F Tol Bef > thd3

oR
all of the elenents in this row
have been pushed into SenEvn,
THEN eval uation of the first
row s sensor infornation
is finished.
ELSE
THEN t he next el ement of the

first rows sensor inf-
ormation is pushed into
SenEvn. GOTO b)

END I F
d) Using the procedire (a)~(c), the systemalso evaluates
the other two row’s sensorinformation correspoding
to “actionl”. After the above proceduresare finished,
the numker of sensorinformation sets (count), which
have beliefs of the localization TolBef > thd3* will
be recorded (count) representso what degreethe robot
could determinethe location whenit takesthat action.
(2) The systemsumsup the sensingcost of every row’s sensor
information, which is usedin the first step (Cost), and also
sums up the Cost of eachrow (sensinginformation sets)
which satisfy Tol Be f > thd3.
(3) Selectsan optimal action by an efficiency criterion, i.e., an
actionwhich hasthe largestcount and lower sensingcost.

For examge, in the Fig. 5, eachcount of “actionl” and
“action3” is “3", andthe count of “action2” is “1”, so the
optimal action can be selectedrom "action1” and “action3”.
Since the sensingcost of “action3” is lower than that of
“actionl”, in this case the optimal actionshouldbe “action3”.

E. Speedp of the Senso Planring

If the algoithm enumeatesand checksall possiblecases,
enormous compuation will be requied in step (1) of the

4Since TolBef > thd3 meansthe robot can uniquely detemine three
intersectbns’ labds (entrance, middle, and exit intersecton), in otherwords,
the robot can determire its global locaton by “action1” and the first row’s
sensorinformaton.

actlist
a2

actionl

action2

action3 2

5

[increase
sc3

sensing I |
cost I I
scl < sc2 <

Fig. 5. An optimal acion is detemined by comparirg the sensinginforma-
tion’s local distan@ andgeoméric feature. The integer representsthe sensing
informaton. The numbersfrom left to right arevaluesof my1, m2, andT' f,
respetively. Actionl,action2,action3 arevaluesof ap.

sensomplanning To redue the compuational cost,insteadof
simply runnirg the BN infererce engineto evaluatethe action
and sensorinformation, we compare the sensorinformation
features(include local distan@ and geometric featue) and
checkwhetherthey canuniguely determire a location by the
sameaction.

We will explain the metha usingthe caseof Fig. 5.

(i) We comparethe sensinginformation of the Msen that has
the sameaction from the left sideto right side. For exampe,

the actionl correspond to three setsof sensinginformation.
In the first row of the sensinginformation sets(the row with

R1 of Fig. 5), sincethe first elementof rows R2 and R3 are
9" if we getonly the first sensinginformation”1” of row

R1, the systemcan distinguishthe sensorinformation (row

R1) from the othertwo setsof sensorinformation (rows R2

and R3) which have the sameaction (actionl). Of course,
we can also use more sensinginformation of row R1, but
takinginto accounthesensingcost,usingonly thefirst sensing
information,”1”, is more efficient.

We musttest the TolBef(by Eq.2) using the selectedsensing
information(”’1"") andits action,“action1”. If TolBef > thd3,

we considerthatthe first sensingnformation(’1") of row R1

expectedby the “actionl” is sufficient to uniqudy determine
a location Otherwise,we must extend sensinginformation
from its right side ® and test the TolBef until the condition
TolBef > thd3 is satisfied.

Using steps(i) and (ii), we obtainthe narrowestsensingrange
to distinguish the other sensinginformation sets which is

shawn in the gray region (before testing the T'ol Be f) with

the sameaction. If there are some sensinginformation sets,
correspoding to the same action, which are identical, we
cannotdistinguishthe information setsand cannotdetermine
a location uniquely as shavn in Fig. 5 by the black region.

(ii)

(iii)

5For examplg in row R1, if /1" is not sufiicient, we mustadd the right
side of the elements,”2"" or "’2, 2.
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Fig. 6. Globd locdization using BN inference

V. EXPERIMENTS

Using the above learnirg and plannirg algorithm we per
formedsimulationexperimentsin an office environment (Fig.
6). We implemented the BN learning and infererce in a
MATLAB BN Toolbox[12]. Note that we assumethat the
length of corridas £ —- G, E — H andJ — [ is longer
thanthe othercoridors. In Fig. 6,8and9, therealnumbes in
parentlesesthe nunberswith black squaresandthe numbes
with hatchedsquaresepresentthe probailities of the nodes
Tail, Mid, Head respectiely. Thethreshold of the simulation
expetiments are definedas thdl = 0.9, thd2 = 0.9, and
thd3 =0.9.

A. Inferencefor Localizatian

Initially, the roba starts from an unknown position of
the environmen. As shavn in Fig. 6(a), without loss of
generality we assumethe robot startsfrom an intersection
D. After finishing sensingof the corridas, the robot’s globd
localization beliefs are calculatedby Eq.1 The prokabilities
of Head and Mid areinferred usingthe learnedBN andthe
sensorinformation of landmaks (m 1, mp2) and geometic
featureT' f of the intersectio. The sensorinformationwhich
the roba obtdned from corridas D — C is information
of two landmaks, m 1, mp2, andthe geonetrical featue of
intersectionC. For exampge, information of two landmaks is
denotedby numbe “2”, andthe geonetricalfeatureis deroted
by “T". Hencethecondtional prokability of thenode “Head”,
“Mid” is calculatedas follows:

P(Head, Mld|mh1 = 2’mh2 — 2,Tf :II —|—II)

The results of the above conditional prabability are shovn
in Table I. Among the values (i.e., labels) of the nodes
“Head” and“Mid”, D and(C take the maximum probabilities.
Basedon Eq.1, the global localizationbelief is calculatedas
TolBef = 0.5x(1.041.0) = 1.0. SinceTolBef > thdl, the
startpointandcurreri positionaredetermiedas“D” and“C”,
respectiely, and the global localization is determind. The
expeliment shows if the sensorinformation is sufficient, the
roba canlocalizeitself usingthe BN inferenceby the sensor
information of only one corridor, and so sensorplannirg is
not necessary

nodes probaility of the intersectbn’s labek
A[B]J] C DJEJF[G[HJI[]J]K]JL
Head | 0 | O 0O |10[0[O0]JO0O]JO]O]JO][O]O
Mid O[o0J10] o J]OoOJoOoJO]JoJo|JoOoJoO]oO

TABLE |
THE INFERRED PROBABILITIES OF THE NODES HeadAND Mid IN FIG.7(A).

nodes probabhlity of the intersection’s labels
A BI|C|D|[E[F|[G]JHTJIT][J K L
Head 0 ofof1]Jo]JoJoOo[O]JOJ]O 0 0
Mid 57141 00l O0O]JOo[o[O]JO]O[O]J .4286] 0
TABLE 1
THE INFERRED PROBABILITIES OF THE NODE Head AND Mid IN FIG.
10(A).

B. Predictionfor SensorPlaming

However, if the sensorinformation obtaina from the just
senseccorridor is insufiiciert, the roba hasto perfam active
sensingo gathermore sensotinformationto localizeitself. In
caseof Fig. 9, the robot startsfrom intersectionD (of course,
the robot initially does not know its global position) and
movesto intersectionk’, andthe obtainedsensingnformation
is landmarks mp;, mp2 and geomeric feature M f of the
intersectionWe use“1” and“2” to dende the landmaksm
andmy, respectiely, andwe derote geoméric feature M f
of the intersectionby “ T”. Using this sensoiinformation, the
systemcalculatesthe following condtional prdbability using
the BN. The resultsof the condtional prabability are shovn
in Tablell.

P(Head, Mid/mpy = 1,mp2 =2,Tf _n -|—//)

The TolBel is calculatedbasedon Eq.1,TolBef = 0.5 x
(1.0 + 0.5714). Since TolBel < thdl, the robot has two
candichte locatiors indicatedby a dot circle anda solid circle
asshown in Fig. 9(a) Therobot mustperform sensomplanring
to decrasethis uncertainty

Using the sensorplanring (describedin Sec. IV-C), the
roba predicts possibleactions and sensinginformation ex-
pected by taking the actions, based on obtaired sensing
information(mp1, mp2, M f). Using the predictionalgorithm,
theroba obtainedactlist andMge,, asshovnin Fig. 7. The
predictel possibleactiors are“turn left” and“turn right”, and
the sensorinformation predcted by the possibleactionshas
two rows, respectidly.

C. Senso Planning for Localization

Using the sensorplanring procedire (describedn Sec.I\
D) andthe speedupmetha (descritedin Sec.I\\E), the roba
can deternine its location basedon the sensinginformation
which is shavn by the dark baclgrourd in Fig. 7. The
expelimentalresultsshav thatwe canobtainthe samesensing
range(marked in dark) using the sensorplaming procedue
as well as the speedp methal. In Fig. 9, either the “turn



actlist
a2

Msen
mt2 |

mtl |

turn left

turn right

Fig. 7. Predided possibleactions (actlist) and the sensinginformaton
predicted by the actions (Msen) based on sensing information of the
corridor (D — K). (The integers of the table representthe predided sensor
information, i.e., instantationsof the probabilistic variables (my, 1, mp2, T f)
in the BN)

Fig. 8. Therobotcannd obtainsuficient sensorinformationfor localization
until it goesto intersecton J.

left” or “turn right” action can deternine two possibleroba
locatiors, but the sensingcost of “turn right” is lower than
thatof “turn left” (the areaof darkregion expectedby taking
the action“turn right” is smallerthanthat of “turn left”). As
shavn in Fig. 8, if the robot takes the “turn left” action it
cannotlocalize itself until it goesto intersectionJ. Hence,
the optimal actionis “turn right” andthe roba neednot go to
the next intersectia for the global localization(Fig. 9(b)).

Based on the expeaimental results, we verified that the
proposed learnirg and planring algoithms are effective for
global localizationof a mobile roba.

VI. CONCLUSION

We proposeda novel sensorplanring methodfor mohile
roba localizationusinga Bayesiametwork. The BNV structure
is learnedfrom environment databasedon the K2 algoiithm
combiredwith GA. In the execution phasethe sensomplanner
predicts possibleactions and sensinginformation to be ob-
tainedfrom theseactiors, andselectsanoptimd planby taking
into account thetrade-of betweerthegloballocalizationbelief
and the sensingcost. The BN structue learnirg algoiithm
andthe sensomplanring algorithmare validatedby simulation
expetiments.
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