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Abstract

In this paper we propose a novel method of sensor planning for a mobile robot

localization problem. We represent the conditional dependence relation between

local sensing results, actions, and belief of the global localization using a Bayesian
network. Initially, the structure of the Bayesian network is learned from the complete

data of the environment using the K2 algorithm combined with a genetic algorithm

(GA). In the execution phase, when the robot is kidnapped to some place, it plans an

optimal sensing action by taking into account the trade-o� between the sensing cost

and the global localization belief, which is obtained by inference in the Bayesian

network. We have validated the learning and planning algorithm by simulation

experiments in an oÆce environment.
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1 Introduction

The navigation and localization of a mobile robot is a traditional, fascinating
research area. Many studies to date have focused on how to obtain an accurate
map, and then how to match the sensing information of the robot to the
map for localization. However, in robot navigation, the robot cannot always
determine its unique pose only by local sensing information since the sensor is
prone to errors and a slight change of the robot's pose deteriorates the sensing
results. Therefore, many probabilistic approaches have been proposed to cope
with uncertainties and to improve the robustness of the localization (1) (2).
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The localization of a mobile robot involves estimating the pose of the robot in
an environment. There are two classes of localization problem, position track-
ing and global localization. In the position tracking, a robot knows its initial
position (3) and only needs to reduce uncertainty in the odometer reading. If
the initial position is not known or the robot is kidnapped to somewhere, the
problem is global localization, i.e., the mobile robot has to estimate its global
position through a sequence of sensing actions(4).

In this paper, we deal with the global localization problem. The mobile robot
estimates its pose in an environment where locally similar sensing patterns
prevent the robot from simple identi�cation of the global position.

There are two key features of our system. Firstly, we use a Bayesian network
(BN) to represent the conditional dependence relation among the sensing
evidences, the actions performed at intersections of corridors, and the global
localization belief. Initially, the robot navigates in every corridor at least once
and records the sensing data of the environment. The system learns the BN
structure from the complete environment data. Secondly, in the execution
phase (global localization phase), the robot plans an optimal sensing action
by taking into account the trade-o� between the sensing cost and the global
localization belief which is obtained by inference in the BN . We have validated
the learning and the sensor planning algorithm by simulation experiments in
an oÆce environment which has locally similar sensing patterns.

The paper is organized as follows. In Section 2, we review previous studies
on sensor planning of mobile robots. We describe the representation of the
environment using BN , and BN structure learning in Section3. In Section 5,
we introduce the calculation of the localization belief using BN , and planning
of the optimal sensing actions for the localization by taking into account the
balance of localization belief and the sensing cost. The experiments are de-
scribed in Section 6. In the conclusions (Section 7), we summarize our work
and discuss some future plans.

2 Previous works

2.1 Probabilistic Approaches for Global Localization

Some Bayesian approaches to mobile robot navigation and localization have
been proposed. Thrun et al. (1) (4)proposed localization of a mobile robot
using a particle �lter. The particle �lter resamples and updates the belief of
localization, and estimates the maximal posterior probability density for the
localization. However, since the robot moves randomly without sensor plan-
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ning, the system does not always assure eÆcient convergence of the particles
if the environment has locally similar sensing patterns.

Some studies used Bayesian networks for modeling the mobile robot naviga-
tion environment. Asoh et al. (5) developed a system to combine local in-
formation for localization using a Bayesian network. They employed speech
interaction to obtain evidences in the Bayesian network to decrease uncer-
tainty of the localization. However, the system could not actively plan how
the mobile robot should gather sensor information, and the Bayesian network
structure is manually designed. Basye et al. (7) built planning and control sys-
tems that integrated sensor fusion, prediction, and sequential decision-making
using a temporal belief network (dynamic Bayesian network).

2.2 Sensor Planning of Mobile Robot

Sensor planning of mobile robots is also an area of active research. Fox et al.
(8) proposed an Active Markov Localization method to improve the eÆciency
of localization. The sensing actions were planned based on the expected en-
tropy of the localization probability. However, since their system was based on
the �rst-order Markov process, it cannot represent complex relations between
actions, local information, and the global localization. A multiple hypothesis
tracking approach has been used in active global localization (9). However,
the approach was based on Kalman �ltering which assumes a model of linear
dynamics with Gaussian noise.

Kristensen (10) proposed a mobile robot sensor planning method based on a
top-down decision tree algorithm. However, the utility-based Bayesian decision
tree theory is too simple to evaluate the conditional dependence relations
between local sensor information and the global localization. Miura et al. (11)
also de�ned an utility value based on sensing cost and sensing uncertainty
to plan the sensor action for navigation, however, the system used a simple
Bayesian rule.

2.3 Main Features of the Research

We have proposed an algorithm to reconstruct a BN and use it to plan eÆcient
sensing actions for mobile robot localization (12). The probability of localiza-
tion will be improved when the robot obtained a sensor information, and the
obtained sensor information is added as a node to BN. The structure of the BN
is a naive Bayes, there are not any dependent relation between the sensor in-
formation nodes. In this paper, the BN is learned from the environment data,
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the learned structure of BN captures partial conditional dependence relation
between sensor information nodes, action nodes and label of intersections.

Additionally, the research of citation (12) only represented partial environ-
ment, it can not copy with a large environment for learning and localization.
Conversely, the method of this papers learns the BN from complete environ-
ment, it generalize the previous version. Sensor information of this paper is
categorized into four types of nodes. Instead of the naive Bayes style, we build
some conditional dependence relations between them.

In the �eld of Bayesian networks, how to obtain the best structure of Bayesian
network from statistical data is an interesting issue which has been pursued
recently in theoretical analysis (13) (14) (15) as well as its application to real
problems (16).

We propose a sensor planning method for mobile robot localization. Initially,
we represent conditional dependence relations between local sensing results,
actions, and beliefs of the global localization in a Bayesian network (BN)
structure. The BN structure, as well as the parameters, is learned automat-
ically from the environment data using the K2 algorithm combined with a
genetic algorithm (GA). In the execution phase, when the robot is kidnapped
to some place, it plans an optimal sensing action by taking into account the
trade-o� between the sensing cost and the global localization belief, which is
obtained by inference in the BN (17) (18) (19).

3 Environment Information Gathering and BN Con�guration

3.1 Path for Environment Information Gathering

We performed the simulation experiments in an oÆce environment (Fig. 2).
Initially, to obtain complete environment information, the robot must navi-
gate in all of the corridors and intersections. We employ a framework of the
Chinese postman problem (20). The Chinese postman problem requires �nding
the shortest tour in a graph which visits every edge at least once. As shown in
Fig. 1, we represent the topology of the environment as a graph and search a
path from A to A using the next node algorithm (21). Then the robot navigates
in all corridors and intersections along the path and gathers the environment
information to be used for localization tasks. The motion of the mobile robot
is shown in Fig. 2.
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Fig. 1. (left) A graph which represents the topology of the environment. (right) A

path (from A to A) obtained as a solution of the Chinese postman problem.

Fig. 2. The mobile robot gathers the environment information along the path ob-
tained from Fig. 1.

3.2 Assumption of System

To simplify the planning and localization processes, the current system uses
the following assumption:

(1) The robot is guided by commands at each intersection along the path ob-
tained by the next node algorithm (21). The intersection's labelsA;B; :::; L
in Fig. 9 are given by a human at every intersection.

(2) The landmarks are hollows which appear on both sides of every corridor
and geometric feature of the intersections. Since the landmarks are not
unique in the environment, the robot localization often falls into diÆ-
culty by observing only a few of them. In the simulation experiments, we
assume a sensor, such as a laser range �nder, to �nd the hollows. How-
ever, our localization and planning algorithm is not restricted to using a
speci�c sensor and allows other sensors to perceive the landmarks.

(3) We deal with uncertainty in the global localization when similar patterns
of the sensing data inevitably appear at di�erent locations. However,
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Fig. 3. Mapping the environment information of two neighboring corridors into

nodes of BN .

uncertainties in the sensor data caused by the device itself or by the
dynamic environment are not considered.

3.3 Environment Representation and BN Con�guration

We de�ne a segment (Sg) as the environment information of a corridor between
two neighboring intersections. One segment involves four kinds of information
as follows:

(1) Two intersection labels,
(2) Landmarks on both sides of the corridor between two intersections,
(3) Geometric features of the intersections sensed when the robot enters the

intersections,
(4) Action taken by the robot when it enters the corridor.

In our system, we call the environment information of two neighboring corri-
dors an environment information set. As shown in the following sections, we
use a path, a solution of the \Chinese postman problem", to guide the robot
to gather the environment information. Since there are corridors on the path
that have been sensed in one way only, we add complementary data, i.e., to be
obtained when the robot senses from the reverse direction, to the environment
information data set.

The information of every environment information set (for example, label of
an intersection, geometrical feature of an intersection, etc.) corresponds to a
value of nodes in BN .

We de�ne sensing information as observable variables, and labels of intersec-
tions as hypothesis variables of a BN . We put together all of the environ-
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ment information of two neighboring corridors and save them into a training
database. The database is used to learn the parameters and structure of BN .
For example, the training database obtained from a data gathering tour in Fig.
2 has 138 data cases. The BN (Fig. 5) is learned from the training database.
In this case, the BN has 13 probabilistic variables (nodes). As shown in Fig. 3,
the nodes, Head, Mid, Tail, are de�ned by labels of the entrance intersection,
middle intersection, and exit intersection of two neighboring corridors, respec-
tively. In the experiments, the nodes Head, Mid, Tail have twelve possible
values (A;B; :::; L). The nodes Action1 and Action2 denote the actions which
the robot takes when it enters head and middle intersections, respectively. The
action nodes have three possible values: go forward, turn left, turn right. The
nodes Hf, Mf,Tf correspond to geometric features (such as a range pattern)
recognized by the robot when it enters the entrance, middle, and exit inter-
sections, respectively. As shown in Fig. 3, these nodes have six possible values:
+;>;a;`;: and ?. In Fig. 3, there are four possible landmarks (hollows) in
two neighboring corridors, represented by the nodes mh1; mh2; mt1; mt2. In the
experiments, we assume that two hollows can appear on a side of a corri-
dor, and the hollows are used as landmarks. We de�ne the landmark in a list
(geometric feature, local distance 1 ). The landmark nodes have four possible
values: \1� 4" which denotes four layout types of the landmark. In addition,
we de�ne a mediating variable (17), Cn, by label of every data set. The vari-
able of Cn represents the label of data set. In our experiment, we can obtain
138 sets of environment data for BN learning, so the node Cn has 138 values.

Note that the BN used for inference plays a di�erent role from that of a topo-
logical network. The topological network represents only geometric relations of
the landmarks and the intersections in a map, so the size of a topological net-
work grows with the size of the environment. In contrast, the BN represents
the conditional dependence relations between observed landmarks and beliefs
of the intersections. The number of nodes in the BN 's is independent of the
size of the environment, since the environment information set and the con-
ditional dependence relations among the nodes are represented in the node's
values and the BN structure. The size of the environment is re
ected in the
number of values which the probabilistic variables (BN 's nodes) can take. We
can normally use the same BN structure even when the size of the environ-
ment becomes larger, and so can utilize BN structure learning as described
in the following sections.

In our system, we map the environment information set (= the environment
information of two neighboring corridors) into BN node's values, and repre-
sent the conditional dependence relation of environment information in BN
structure. Therefore, the robot can only predict the next corridor's informa-

1 The distance between an intersection and its neighboring landmark, or two neigh-

boring landmarks
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tion and action selection is limited to decide which corridor the robot should
go to next and how far the robot should go in the next corridor to obtain
enough information for the localization. However, when the belief of global
localization is still low even if the robot sensed two neighboring corridors, the
robot has to plan to select the next corridor based on the already sensed in-
formation. In this case, a framework of sequential decision-making based on
one "segment" information will be necessary for the sensor planning; we leave
this to a future study.

4 Learning BN Structure from Data

BN is a directed acyclic graph that represents dependencies between proba-
bilistic variables. An arc between two nodes of BN represents the conditional
dependence relation between the nodes. However, it is often diÆcult to de-
termine the conditional dependence relation among nodes. In our localization
tasks, we usually do not know which landmark has dependency with the other
nodes, so we take a BN structure learning approach instead of designing the
network structure manually.

4.1 K2 Algorithm Combined with GA

We apply a structure search method based on Bayesian score, named the K2
algorithm (14), to learn the conditional dependence relation between local
environment information, robot action, and global localization. The Bayesian
score is a joint probability P (Bs; D) between BN structure (Bs) and database
(D). The K2 algorithm is a greedy search algorithm. Initially each node has no
parents, then the algorithm incrementally adds its parent which most increases
the score of the resulting structure. When the addition of no single parent can
increase the score, it stops adding parent nodes to the current node. Ref(14)
describes that the search space is too huge to evaluate all of the possible
structures. For example, when node number n = 5, the number of possible
structures is 29; 000. To reduce the search space, the K2 algorithm uses a
constraint of ordering of nodes (i.e., the conditional dependence attributes of
a node should appear earlier in the order). However, it is often diÆcult to
determine the order.

In our system, we employ a genetic algorithm(GA) to search the best ordering
as described in Ref. (15). Using this ordering,K2 learns the best BN structure
from the data. Then the Bayesian score of K2 gives a �tness value to GA.
The combination of GA and K2 iterates until the average �tness is improved
no further.

8



0 10 20 30 40 50 60 70 80 90 100
−1800

−1750

−1700

−1650

−1600

−1550

−1500

Number of generation

N
at

ur
al

 lo
ga

rit
hm

 o
f B

ay
es

ia
n 

sc
or

e

Results of ordering search by GA and Bayesian score

Best fittness 

Average fittness 

Fig. 4. The results of ordering searching by GA and Bayesian score
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Fig. 5. Learned BN 's structure by K2 and GA

4.2 Example of BN Structure Learning

Using the training database from Fig. 2, we attempt to learn a structure of
BN . The population size of the GA is 80 and the algorithm uses crossover
and mutation operations. Figure 4 shows the convergence of �tness value with
100 generations. The dashed line and solid line in the �gure show the average
and the best �tness scores of each generation, respectively. By combining the
K2 algorithm with the GA search, we can obtain a suboptimal ordering of the
nodes and a semi-optimal BN structure as shown in Fig. 5.
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4.3 Conditional Probability Tables (CPTs) Learning of BN

BN is represented in two factors (17), e.g. graph structure and CPTs. Graph
structure of BN is to represent the casual relations between nodes. The graph
structure of our BN has been learned by K2 algorithm combined with GA.
CPTs is conditional probability tables of nodes, it can be learned from case
data directly. Since the environment information data is complete, we use
Maximum Likelihood Estimation(13) method to learn the CPTs. For ex-
ample, The conditional probability of node X's value xi is P (X = xijZ1 =
z1; Z2 = z2; :::; Zk = zk), and Z1; Z2; :::; Zk is K parents nodes of node X.
z1; z2; :::; zk are denoted by the values of nodes Z1; Z2; :::; Zk. So the conditional
probability P (X = xijZ1 = z1; Z2 = z2; :::; Zk = zk) should be calculated as
the following:

P (X = xijZ1 = z1; Z2 = z2; :::; Zk = zk)

=
P (X = xi; Z1 = z1; Z2 = z2; :::; Zk = zk)

P (Z1 = z1; Z2 = z2; :::; Zk)

'
N(X = xi; Z1 = z1; Z2 = z2; :::; Zk = zk)

N(Z1 = z1; Z2 = z2; :::; Zk)

N(X = xi; Z1 = z1; Z2 = z2; :::; Zk = zk) denotes the number of training
data cases which has X = xi; Z1 = z1; Z2 = z2; :::; Zk = zk. N(Z1 = z1; Z2 =
z2; :::; Zk = zk) denotes number of the data case which has Z1 = z1; Z2 =
z2; :::; Zk = zk in the total environment data.

The conditional probability tables (CPTs) of the BN is learned by Maximum
Likelihood Estimation. Since we can obtain complete environment data using
Chinese postman solution (see section 3.1), the learned CPTs should be a
exact estimation based on the gathered complete environment data.

In the learned BN, some nodes with large number of values, but it does not
e�ect the inference accuracy and speed. In our case, we use the toolbox ofMax-
imum Likelihood Estimation which is implemented in MATLAB. The learning
speed is about 2 seconds. We also test the BN using training data, it shows a
very accurate result (see the next section).
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4.4 Test the Learned BN

To validate the performance of the learned Bayesian network, we have test
the Bayesian network in the training data 2 . We set the evidence of Head,
Hf , Mh1, action2, and Mh2, then estimate the probability of Mf , Mid,
Mt1, Mt2, Tf , and Tail. The estimated probability is the joint probability
of the intersection labels (Mid, tail) and sensor information of the second
corridor given Head intersection label, sensor information of the �rst corridor
and robot action. The test experiments have been conducted using 138 sets of
environment information data (complete environment data), inference results
show the correct rate is 100%. So the learned structure is suÆcient for our
prediction and planning experiments, even if the learned BN structure without
a global maximum Bayesian score.

5 Sensor Planning for Localization

5.1 Summary of the Sensor Planning System

The execution phase of the planning system consists of the following three
steps:

(1) Inference for localization: Initially, a mobile robot starts navigation
from an unknown position. While the robot is sensing in a corridor, the
BN is used to infer the global localization belief whenever the robot ob-
tains new sensing information.

(2) Prediction for sensor planning: If the sensing information of this
corridor is insuÆcient for localization, the system predicts possible actions
and sensing information to be obtained by the actions. The sensor planner
runs at the exit intersection of the sensed corridor.

(3) Sensor planning for localization: Then the sensor planner uses the
predicted information to select an optimal sensing action to perform ac-
tive sensing by taking into account of the global localization belief and
the sensing cost.

2 Since we have used the complete environment data to learn the Bayesian network,

the training data and test data are identical.
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5.2 Inference for Localization

The robot starts navigation from an unknown position without sensor plan-
ning. The navigation basically uses a potential method in a corridor. The
robot gathers sensing information events, including landmarks and geometric
features of intersections, in the current corridor. Then the information events
are given to the BN as evidences to infer global localization, i.e., which corri-
dor the robot has sensed. The probability of the corridor's label is calculated
as P (Head;Mid; Tailjobtained sensing event) using the BN .

We de�ne belief of the global localization (TolBef ) as follows:

TolBef = (1=2)(max(P (Head)) +max(P (Mid))) (1)

wheremax(P (Head)) andmax(P (Mid)) are the maximum values of the prob-
ability of node Head and Mid, respectively. P (Head) and P (Mid) are calcu-
lated by the BN inference. Since the conditional dependence relation between
Head and Mid is re
ected in BN , it is not necessary to construct their joint
probability, so we calculate the belief of the global localization (TolBef ) as
the average of probabilities.

If TolBef � thd1(thd1 is a threshold), the system terminates the localization
process. Because in this case the robot can estimate the labels of the corridors
only by using the current environment information, there is no need to perform
sensor planning. Otherwise (TolBef < thd1), the robot has to move to the
next corridor to perform active sensing. Therefore, the sensor planner selects
an optimal sensing action for the localization.

Since the BN of our system is not a tree structure but has loops as shown
in Fig. 5, we use the Junction tree algorithm (17) to infer probabilities of the
nodes.

5.3 Prediction for Sensor Planning

The sensor planner consists of two processes: (1) prediction and (2) planning.
The prediction process predicts some possible actions and sensing information
expected to be obtained by these actions. The prediction algorithm has the
following two steps:

(1) The �rst step is to search data cases, i.e., values of the node Cn, in the
database, whose probabilities are not zeros based on the sensing event
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obtained from the just-sensed corridor 3 . That is, the system stores the
node Cn's values, which satisfy the following condition, in a list cnl =
(cnl1; cnl2; :::).

P (Cnjobtained sensing information) 6= 0;

Based on the results, we can estimate which data case in the recorded
sensing information database is closer to the obtained sensing informa-
tion.

(2) The second step is to predict possible actions (PA) and sensor informa-
tion (SI) 4 based on the obtained sensing information (OSI) and the
estimated Cn values. The prediction is performed using the following
probabilities:

P (PAjcnl; OSI) > thd2 (a)

P (SIjPA; cnl; OSI) > thd2 (b)

If the values of (a) and (b) exceed a certain threshold thd2, we save the
possible actions in a list actlist, and save the predicted sensor information
in a matrix Msen.

5.4 Sensor Planning Procedure

Through the prediction step, the system obtains actlist, a list of possible ac-
tions and also a matrix of predicted sensing informationMsen = (sn1; sn2; :::; snn)

T ,
Each element of M

sen
represents a predicted sensor information list to be ob-

tained by a possible action (the element of actlist). Each predicted sensor
information list ofMsen is sorted in the order of sensing cost, i.e. the distance
from the current intersection to the location of the sensor information.

Consequently, the sensor planning process selects an optimal action from
actlist which allows the robot to acquire enough sensing events to decrease
ambiguity of the global localization belief by taking into account the trade-o�
between the sensing cost and the global localization belief.

For example, an actlist and a Msen are shown in Fig. 6. The possible actions
are \action1, action2, action3", and the integers on the right side of Fig. 6
represent expected sensor information to be obtained by the actions. In the
Fig. 6, each row of the M

sen
is one set of the predicted sensor information

when taking the action on the left side. Every row of the Msen is sorted in

3 The prediction and planning processes are performed when the robot is in the

middle intersection.
4 It includes landmarks and intersection's geometric features expected to be per-

ceived when the robot takes the actions
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ascending order of the sensing cost, i.e., the sensing cost of the right entry is
larger than that of the left. In the evaluation process, we use the elements of
theMsen and the possible actions to estimate the probabilities of the labels of
the intersections, and calculate the sensing cost. Since the robot uses sensing
information of a set of two neighboring corridors, the TolBef should be de�ned
as the average of the maximum probabilities of the three intersection labels.

TolBef =(1=3)(max(P (Head)) +max(P (Mid))

+max(P (Tail))) (2)

Using the above possible actions and predicted sensor information, the system
performs the sensor planning which has the following three steps:

(1) The �rst step is to use the already-obtained sensing information, the
possible action, and sensing information to be obtained by the action, to
infer (TolBef ), the belief of the global localization. In this step, we must
evaluate every action and every set of sensor information (every row of
Msen in Fig. 6). For example, when we evaluate \action1" of Fig. 6 and
the corresponding sensor information of the three rows, the procedures
are as follows ((a)�(d)):
(a) The system creates an empty list (SenEvn), and pushes the left-most

element of the �rst row's sensor information into SenEvn.
(b) Using the SenEvn, \action1" and obtained sensor information to

estimate the TolBef based on Eq.2 and BN .
(c) IF TolBef > thd3 (thd3 is a threshold)

OR

all of the elements in this row

have been pushed into SenEvn,

THEN evaluation of the first

row's sensor information

is finished.

ELSE

THEN the next element of the

first row's sensor inf-

ormation is pushed into

SenEvn.

GOTO (b)

END IF

(d) Using the procedure (a)�(c), the system also evaluates the other two row's

sensor information corresponding to \action1". After the above procedures

are �nished, the number of sensor information sets (count), which have

beliefs of the localization TolBef > thd3 5 will be recorded. (count)

5 Since TolBef > thd3 means the robot can uniquely determine three intersec-

tions' labels (entrance, middle, and exit intersection), in other words, the robot can

determine its global location by \action1" and the �rst row's sensor information.
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represents to what degree the robot could determine the location when it

takes that action.

(2) The system sums up the sensing cost of every row's sensor information,
which is used in the �rst step (Cost), and also sums up the Cost of each
row (sensing information sets) which satisfy TolBef > thd3.

(3) Selects an optimal action by an eÆciency criterion, i.e., an action which
has the largest count and lower sensing cost.

For example, in the Fig. 6, each count of \action1" and \action3" is \3",
and the count of \action2" is \1", so the optimal action can be selected from
"action1" and \action3". Since the sensing cost of \action3" is lower than that
of \action1", in this case, the optimal action should be \action3".

5.5 Speedup of the Sensor Planning

If the algorithm enumerates and checks all possible cases, enormous compu-
tation will be required in step (1) of the sensor planning procedure. To reduce
the computational cost, instead of simply running the BN inference engine to
evaluate the action and sensor information, we compare the sensor informa-
tion features (include local distance and geometric feature) and check whether
they can uniquely determine a location by the same action.

We will explain the method using the case of Fig. 6.

(i) We compare the sensing information of the Msen that has the same ac-
tion from the left side to right side. For example, the action1 corresponds
to three sets of sensing information. In the �rst row of the sensing infor-
mation sets (the row with R1 of Fig. 6), since the �rst element of rows
R2 and R3 are 00200, if we get only the �rst sensing information 00100 of row
R1, the system can distinguish the sensor information (row R1) from the
other two sets of sensor information (rows R2 and R3) which have the
same action (action1). Of course, we can also use more sensing informa-
tion of row R1, but taking into account the sensing cost, using only the
�rst sensing information, 00100, is more eÆcient.

(ii) We must test the TolBef (by Eq.2) using the selected sensing information
(00100) and its action, \action1". If TolBef > thd3, we consider that the
�rst sensing information (00100) of row R1 expected by the \action1" is
suÆcient to uniquely determine a location. Otherwise, we must extend
sensing information from its right side 6 and test the TolBef until the
condition TolBef > thd3 is satis�ed.

6 For example, in row R1, if 00100 is not suÆcient, we must add the right side of the

elements, 00200 or 002; 200.
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Fig. 6. An optimal action is determined by comparing the sensing information's

local distance and geometric feature. The integer represents the sensing informa-

tion. The numbers from left to right are values of mt1, mt2, and Tf , respectively.

Action1; action2; action3 are values of a2. The gray region indicates the narrowest

sensor range to identify the sensor information sets which correspond to each action.
The black region indicates the sensor information sets are identical, the system can-

not distinguish each other. The area of gray region illustrates the sensing cost which

is used at sensor planning for localization step to evaluate each possible action.

(iii) Using steps (i) and (ii), we obtain the narrowest sensing range to dis-
tinguish the other sensing information sets which is shown in the gray
region (before testing the TolBef) with the same action. If there are
some sensing information sets, corresponding to the same action, which
are identical, we cannot distinguish the information sets and cannot de-
termine a location uniquely as shown in Fig. 6 by the black region.

Since the majority computational cost of sensor planning is depended on the
joint probability calculation of labels nodes (Head, Mid, Tail), given obtained
and predicted sensor information set. We would evaluate the computing time
of the sensor planning process using the frequency of Bayesian network engine
running for joint probability estimation at the remained paragraph.

We de�ne the N is the frequency of the Bayesian network engine running dur-
ing the sensor planning process. Since the planning algorithm include three
steps: inference for localization, prediction for sensor planning and sensor
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planning for localization, the frequency of the Bayesian network engineer run-
ning should be:

N = N1 +N2 +N3

N1 denotes the frequency of Bayesian network running during inference for
localization, N2 denotes the frequency of Bayesian network running during
prediction for sensor planning, and N3 denotes the frequency of Bayesian net-
work running during sensor planning for localization. Since the N1 and N2

hold very small part of N , we only take into account the e�ect of N3 at the
remained computational complex discussion.

In the original algorithm, the N3 of the above formulation is de�ned as follows:

N3 =
X

ai2NPA

X
sj2NSI(ai)

�
SenNum(ai;sj)

�
(3)

NPA denotes the number of possible actions, NSI(ai)
is the the number of

the predicted sensor information sets which correspond to sensor action ai.
And SenNum(ai;sj) denotes the number of sensor information which is in the
narrowest sensing range. Intuitively, N3 is the sensor information number of
the gray and black region of Fig. 6.

In order to shorten the computing time of the step III, i.e., sensor planning
for localization, we proposed a speedup algorithm to reduce the frequency of
the Bayesian network running. Instead of evaluating joint probability of nodes
(Head, Mid, Tail) given all of the sensor information and its combination 7 , the
speedup algorithm compares the sensor information sets and checks whether
they can uniquely determine a location by the same sensing action. Since the
speedup algorithm has to evaluate the joint probability of intersection labels
given the compared results, the frequency of the Bayesian network running in
the speedup algorithm should be de�ned as follows:

N speedup
3 =

X
ai2NPA

NSI(ai)
(4)

The parameter N speedup
3 denotes the frequency of the Bayesian network in-

ferring using the speedup algorithm. Intuitively, the N speedup
3 of Eq. 4 is the

number of rows. Comparing the Eq. 4 and Eq. 3, we can obtain a result:

N3 > N speedup
3

7 The number of combination is SenNum(ai;sj)
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The above analysis results indicate that the speedup algorithm can e�ectively
reduce the computational cost of the sensor planning process.

5.6 Theoretical Analysis of Sensor planning for Localization

In sensor planning for localization process, we have de�ned three steps, infer-
ence for localization, prediction for sensor planning, and sensor for localiza-
tion. The purpose of the three steps is to �nd an action which can balance the
probability of the nodes (Head, Mid, and Tail) and sensing cost. The action
(action?) will let the integrated utility to be maximal:

action? = arg max
action2PA

 
� � TolBef +

1� �

Cost

!
(5)

� denotes a parameter to balance the localization probability and sensing cost.
Cost indicates the sensing cost for localization. TolBef is an average value
of intersection labels probability, and is calculated based on the probability of
P (LABELjPA;OSI; SI; Cn). LABEL denotes the intersection label nodes
(Head, Mid, and Tail). P (LABELjPA;OSI; SI; Cn) should be calculated
as follows:

P (LABELjPA;OSI; SI; Cn) (6)

=
P (LABEL)� P (PA;OSI; SI; CnjLABEL)

P (PA;OSI; SI; Cn)

/P (LABEL)� P (PA;OSI; SI; CnjLABEL)

In this system; we assume P(LABEL) is a constant

/P (SIjPA;OSI; Cn; LABEL)� P (PA;OSI; CnjLABEL)

/P (SIjPA;OSI; Cn; LABEL)� P (PAjOSI; Cn; LABEL)

�P (OSI; CnjLABEL)

/P (SIjPA;OSI; Cn; LABEL)� P (PAjOSI; Cn; LABEL)

�P (CnjOSI; LABEL)� P (OSIjLABEL) (7)

We can rewrite P (OSIjLABEL) of the above formulation as follows:

P (OSIjLABEL) / P (LABELjOSI)� P (OSI) (8)

Eq. 8 is estimated at step I (inference for localization). The robot estimates
the probability of node Head and Mid using the obtained sensor information
(OSI)) from the moved corridor. If the localization belief satis�es the condition
which is shown in Eq.1, the robot will stop active sensing for localization.
Otherwise, it has to select an action to move to the next corridor.
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The probability P (CnjOSI; LABEL) of Eq. 7 allows the robot to estimate
which data case of the environment is closer to the obtained sensor informa-
tion. In Eq. 7, the probability P (PAjOSI; Cn; LABEL) predicts the possible
actions, and P (SIjPA;OSI; Cn; LABEL) predicts the possible sensor infor-
mation (SI) which correspond to each possible action based on Cn and OSI.
Cn is estimated based on P (CnjOSI; LABEL) 6= 0 (see section 5.3). The cal-
culation of P (CnjOSI; LABEL), P (PAjOSI; Cn; LABEL) and P (SIjPA;
OSI; Cn) are conducted at the process of prediction for sensor planning.

In our algorithm, the calculation of P (CnjOSI; LABEL) and P (PAjOSI; Cn;
LABEL) are used to predict the possible actions, and the possible actions are
determined based on an threshold (th2). After we determined the predicted
actions, we can assume that the value of Eq. 6 is directly proportional to
P (SIjPA;OSI; Cn; LABEL). P (SIjPA;OSI; Cn; LABEL) is probability of
the predicted sensor information correspond to possible action PA and ob-
tained sensor information OSI.

The calculation of P (SIjPA;OSI; Cn; LABEL) allows the robot to predict
the sensor information of the next corridor based on an threshold, thd2 (see
section 5.3). Since the higher value of P (SIjPA;OSI; Cn; LABEL) can guar-
antee P (LABELjPA;OSI; Cn; SI) to hold higher score, we can use the pre-
dicted sensor information (SI), action (PA), and Cn to calculate P (LABELj
PA;OSI; Cn; SI), and evaluate every possible action. The evaluation of ac-
tions and predicted sensor information is performed in step III, i.e., sensor
planning for localization.

In the section 5.4, we illustrate a concept, count, which represents to what
degree the robot could determined the location when it takes an action. The
determination of the location is calculated in P (LABELjPA;OSI; Cn; SI)
using Bayesian network inference. P (LABELjPA;OSI; Cn; SI) denotes the
probability of nodes Head, Mid and Tail. And TolBef is an average value
of the P (LABELjPA;OSI; Cn; SI) (see Eq. 1 and 2 of paper). Based on the
above calculation and the thresholds (th1; th2), we can obtain some candidates
of optimal actions. Taking into account the localization belief and sensing cost,
we can �nd out an optimal action from the action candidates.

If we select an action for localization randomly, the robot can not guarantee
to obtain a high score of P (SIjPA;OSI; Cn; LABEL). Since we assume the
value of Eq. 6 is directly proportional to P (SIjPA;OSI; Cn; LABEL), the
robot can not guarantee to localize itself by the randomly determined action,
or the the randomly determined action cannot guarantee the robot to obtain
a best balance point between P (LABELjPA;OSI; Cn; SI) and sensing cost.
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6 Experiments

Using the above learning and planning algorithm, we performed simulation
experiments in an oÆce environment (Fig. 7). We implemented the BN learn-
ing and inference in a MATLAB BN Toolbox(22). Note that we assume that
the length of corridors F ! G,E ! H and J ! I is longer than the other
corridors. In Fig. 7,10 and 9, the real numbers in parentheses, the numbers
with black squares, and the numbers with hatched squares represent the prob-
abilities of the nodes Tail, Mid, Head, respectively.

The thresholds thd1 and thd3 are convergence conditions of global localization.
In step I of sensor planning process, i.e., inference for localization, we de�ne
the average probability of the nodes (Head, Mid) to be TolBef . If the robot
can obtain TolBef � th1, the active sensing action should be stopped. The
convergence condition is determined by practical wisdom. In our experiments,
we de�ne the thd1 and thd3 is 0.9, that means if we obtain average probability
of node Head Mid is lager than 0.9, the pose of robot is determined.

The threshold thd2 serves the determination of sensor information prediction.
The purpose of the thd2 is to reduce the sensor planning computational cost,
so the value of thd2 don't e�ect the result of sensor planning, it just e�ects
the computational cost of sensor planing. If we set a very low thd2, we have
to evaluate a lot of predicted sensor information using Bayesian network. In
our experiment, we set the threshold to be 0.9.

6.1 Inference for Localization

Initially, the robot starts from an unknown position of the environment. As
shown in Fig. 7(a), without loss of generality, we assume the robot starts from
an intersection D. After �nishing sensing of the corridors, the robot's global
localization beliefs are calculated by Eq.1. The probabilities of Head and Mid
are inferred using the learned BN and the sensor information of landmarks
(mh1; mh2) and geometric feature Mf of the intersection. The sensor infor-
mation which the robot obtained from corridors D ! C is information of
two landmarks, mh1; mh2, and the geometrical feature of intersection C. For
example, information of two landmarks is denoted by number \2", and the
geometrical feature is denoted by \>". Hence, the conditional probability of
the node \Head", \Mid" is calculated as follows:

P (Head;Midjmh1 = 2; mh2 = 2;Mf =00 >00)
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Fig. 7. Global localization using BN inference

The results of the above conditional probability are shown in Table 1. Among
the values (i.e., labels) of the nodes \Head" and \Mid",D and C take the max-
imum probabilities. Based on Eq.1, the global localization belief is calculated
as TolBef = (1=2)� (1:0 + 1:0)= 1:0. Since TolBef > thd1 (thd1=0,9), the
start point and current position are determined as \D" and \C", respectively,
and the global localization is determined. The experiment shows if the sensor
information is suÆcient, the robot can localize itself using the BN inference
by the sensor information of only one corridor, and so sensor planning is not
necessary.

Fig. 7(b) shows another example of BN inference for global localization. The
robot can localize itself using the sensor information of only corridors A! B.

6.2 Prediction for Sensor Planning

However, if the sensor information obtained from the just sensed corridor
is insuÆcient, the robot has to perform active sensing to gather more sensor
information to localize itself. In case of Fig. 9, the robot starts from intersection
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nodes probability of the intersection's labels

A B C D E F G H I J K L

Head 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mid 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1

The probabilities of the nodes Head and Mid which inferred by the BN in Fig.7(a).

nodes probability of the intersection's labels

A B C D E F G H I J K L

Head 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mid 0.5714 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4286 0.0

Table 2

The probabilities of the node Head and Mid which inferred by the BN in Fig. 9(a).

D (of course, the robot initially does not know its global position) and moves
to intersectionK, and the obtained sensing information is landmarksmh1,mh2

and geometric feature Mf of the intersection. We use \1" and \2" to denote
the landmarks mh1 and mh2, respectively, and we denote geometric feature
Mf of the intersection by \>". Using this sensor information, the system
calculates the following conditional probability using the BN . The results of
the conditional probability are shown in Table 2.

P (Head;Midjmh1 = 1; mh2 = 2; T f =00 >00)

The TolBel is calculated based on Eq.1, TolBef = (1=2) � (1:0 + 0:5714)=
0:787. Since TolBel < thd1(thd1=0.9), the robot has two candidate locations
indicated by a dot circle and a solid circle as shown in Fig. 9(a). The robot
must perform sensor planning to decrease this uncertainty.

Using the prediction algorithm (described in Sec. 5.3), the robot predicts pos-
sible actions and sensing information expected by taking the actions, based
on obtained sensing information (mh1; mh2;Mf). Using the prediction algo-
rithm, the robot obtained actlist and M

sen
as shown in Fig. 8. The predicted

possible actions are \turn left" and \turn right", and the sensor information
predicted by the possible actions has two rows, respectively.

In contrast to the predicted results (Fig. 8) and the simulation environment
information (Fig. 9(a)), there are two possible positions of the robot (A and
K). At the intersection A (or K), the robot can only perform two possible
actions, \turn left" and \turn right", corresponding to the predicted results
(actlist of Fig. 8). If the robot performs the action \turn left" at the inter-
section K (or A), it can obtain two sets of sensor information (K ! J or
A! L), and if the robot performs the action \turn right", it can obtain the
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actlist

turn left

turn right

22 3

2 2 6

1

2 1

1

5

5

a2 mt1 mt2 Tf
Msen

Fig. 8. Predicted possible actions (actlist) and the sensing information predicted

by the actions (Msen) based on sensing information of the corridor (D ! K). (The

integers of the table represent the predicted sensor information, i.e., instantiations

of the probabilistic variables (mh1;mh2; T f) in the BN)

sensor information from K ! L or A ! B. The integers of Fig. 8 represent
the predicted sensor information, they also correspond to the environment in-
formation. The experimental results show that the prediction algorithm works
e�ectively.

6.3 Sensor Planning for Localization

Using the sensor planning procedure (described in Sec.5.4) and the speedup
method (described in Sec.5.5), the robot can determine its location based on
the sensing information which is shown by the grey background in Fig. 8.
The experimental results show that we can obtain the same sensing range
(marked in grey) using the sensor planning procedure as well as the speedup
method. In Fig. 9, either the \turn left" or \turn right" action can determine
two possible robot locations, but the sensing cost of \turn right" is lower than
that of \turn left" (the area of grey region expected by taking the action
\turn right" is smaller than that of \turn left"). Take into account the trade-
o� between the global localization belief and sensing cost, we can determine
that the action \turn right" should be optimal action. As shown in Fig. 9 and
Fig. 10, according to the sensor planning results, if the robot takes the \turn
left" action, it cannot localize itself until it goes to intersection J . If the robot
performs the action \turn right", it need not go to the next intersection for
the global localization (Fig. 9(b)).

Figure 11 shows another localization experiment. The robot starts from an
unknown position (K), and navigates to intersection K. Using the obtained
sensor information, the estimated current positions are indicated as dot circles
and solid circles. Using the prediction procedure (see Sec.5.3), we can obtain
some possible actions and predicted sensor information lists (Fig. 12). Using
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Fig. 9. Example of sensor planning experiments for robot localization. (In the �gure,

the real numbers in ( ), ( ) with black squares and ( ) with hatched squares repre-

sent the probability of node Tail, Mid, Head, respectively. If the intersection is the

instantiation of node Tail, Mid, Head, the probability is shown at the intersection.

A

B C

D

F

E

G

H

IJKL

(1.0)

(1.0) (1.0)

Robot

Fig. 10. The robot cannot obtain suÆcient sensor information for localization until

it goes to intersection J .

the sensor planning algorithm (see Sec.5.4 and 5.5), the sensing range for the
global localization can be determined. The ranges are marked by the gray and
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Fig. 11. The robot cannot localize itself only by the sensor information of the corridor

(K ! D). The solid circles and the dot circles mean the possible positions inferred

by BN based on the sensor information of the corridor (K ! D).

black background. Since the actions \go forward" and \turn right" allow the
robot to determine four \location"s while the action \turn left" can determine
two possible \location"s. As shown in Fig.12, if the robot acts \turn left",
it can obtain four sets of possible sensor information, corresponding to the
simulation environment. The four sets of possible sensor information should
be D ! A, D ! C, D ! K and E ! F (Fig.11), respectively. Fig.12
also indicates that if the robot acts \turn left", it should obtain two sets of
identical sensor information (be marked in black background), corresponding
to the simulation environment, the two sets of identical sensor information
should be D! A and D! K. That means, in Fig. 11, if the sensed corridor
is K ! D or E ! D, even if it acts \turn left", the corridors (K ! D ! A
and E ! D! K) have identical sensor information, so in this case, the robot
can not localize itself by action \turn left". And if the robot acts \go forward"
(or \turn right"), it should not obtain two sets of identical sensor information.
The system eliminates the \turn left" action from the candidates.

In addition, the sensing cost of the action \go forward" is lower than that of
the action \turn right" (the area of grey region expected by taking the action
\go forward" is smaller than that of \turn right"). Therefore, the optimal
sensing action should be \go forward". As shown in Fig. 12, if the robot
takes the action \turn right", it cannot localize itself until it goes to the next
intersection E(Fig. 14), however, the robot need not go to the next intersection
C for global localization if it performs the action \go forward" (Fig. 13). If
the robot takes the action \turn left", it cannot localize itself even if it has
sensed two corridors (Fig. 15).

Based on the experimental results, we veri�ed that the proposed learning and
planning algorithms are e�ective for global localization of a mobile robot.
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Fig. 12. Predicted possible actions (actlist) and sensing information to be ob-

tained from the actions (Msen) based on sensing information of the corridor

(K ! D). (The integers in the table represent values of the probabilistic variables

(mh1;mh2; T f) of the BN)

6.4 Real Robot Experiment

We conduct a real robot experiment in a practical environment which is sim-
ilar to the above simulation environment. Initially, the robot starts from the
intersection D, and moves to the intersection K (Fig. 16(a)). After sensing
all of the sensor information of the corridor D ! K, the probability of nodes
(Head andMid) are shown in Table. 1. Since the sensor pattern of the corridor
D ! K and D ! A are identical, the robot cannot localize itself. Currently,
the robot has two possible poses, i.e., the intersection K and A. The localiza-
tion probability of K and A are 0.4286 and 0.5714, respectively (Fig. 16(b)).
Using our sensor planning algorithm, the robot obtains an optimal action for
localization is turn right (see section 6.3 for detail). Fig 16(c) shows that the
robot localizes itself in a lowest sensing cost. The probability of Head, Mid
and Tail are 1.0. That means the robot pose is determined.
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Fig. 13. The robot selects an optimal sensing action (go forward) using the sensor

planner, so it can localize itself by using only the sensor information of corridor

(K ! D) and a part of the sensor information of the corridor (D ! C).

Fig. 14. The robot cannot localize itself until it moves to intersection E.

6.5 Comparison Between Sensor Planning and Randomly Action Selection

In the case of section 6.4, our speed up sensor planning method can be executed
in about 0:35 seconds on a Pentium Mobile CPU (1.40GHz) at the intersection
K. If the robot evaluates all of the sensor actions and the possible sensor
information combination, the computational time should be 0:5 seconds. In
the case of Fig.11-15, the proposed speed up sensor planning algorithm need
1:23 seconds for sensor action selection at the intersection D, then if the robot
evaluates all of the sensor actions and sensor information combination, the
computational time should be 2:72 seconds. So our proposed speed up sensor
planning algorithm is e�ectiveness in the sensor action selection process.

In the case of section 6.4, the robot can localize itself based on the planned
sensor action (turn right) at the �rst landmark of the corridor (K ! L),
the moving time from intersection K to the the �rst landmark is about 20
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Fig. 15. If the robot performs the \turn left" action, it cannot localize even if it has

sensed two corridors.

seconds (the speed of the mobile robot is 10cm/s). Then if the robot take turn
left action for localization, the robot can not localize itself until it goes to
the intersection J , the robot moving from intersection K to J need about 55
seconds. So the proposed algorithm can reduce moving cost for the localization.

7 Discussion and Conclusion

The space of Bayesian networks is a combinatorial space, consisting of a super-
exponential number of structures �! 2O(n2 log n). Therefor, �nding the highest-
scoring network from Bayesian network space is intractable. The K2 algorithm
combined with GA allows us to estimate a semi-optimal structure. This heuris-
tic search method cannot guarantee the learned structure has a best structure
for the data sets �tting. However, through the learning of K2 with GA, we can
obtain a structure with local maximum Bayesian score. This structure re
ects
partial conditional dependence relations between the variables, but cannot
capture all of the conditional dependence relations between the nodes. We
have test the learned Bayesian network using the training data, we found the
test result is very good, even if the structure is not a global optimal. The ex-
periment results validate the learned Bayesian network is suÆcient for sensor
planning and prediction process. However, we also found some inference bias
errors during the prediction and planning process. For example, the experi-
ment of Fig. 9 (a), the robot sensed the sensor information from the corridor
(D! C). Since the sensor patterns of D! A and D! C are identical, the
probability of the robot pose at intersection A and K should be 0.5, but the
inferred results based on our learned Bayesian network are 0.5714 and 0.4286,
respectively. We think the cause of the inference bias errors maybe the learned
structure is not a global optimal.
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Fig. 16. A real robot experiment of sensor planning for mobile robot Localization

using BN inference

In this paper, we proposed a novel sensor planning method for mobile robot
localization using a Bayesian network. The BN structure is learned from envi-
ronment data based on the K2 algorithm combined with GA. In the execution
phase, the sensor planner predicts possible actions and sensing information to
be obtained from these actions, and selects an optimal plan by taking into
account the trade-o� between the global localization belief and the sensing
cost. The BN structure learning algorithm and the sensor planning algorithm
are validated by simulation experiments. The following research issues should
be considered in future work:

(1) As the landmarks of each segment are designed by a human, the system
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cannot understand which landmarks must be focused on. We will inves-
tigate learning of the landmarks from the environment for a Bayesian
network in a future study.

(2) We will integrate multiple sensor information for BN learning and sensor
planning.
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